Azmat Ali Phul, M. J. Memon, S.N.R. Shah, A. R. Sandhu
{"title":"GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete","authors":"Azmat Ali Phul, M. J. Memon, S.N.R. Shah, A. R. Sandhu","doi":"10.28991/CEJ-2019-03091299","DOIUrl":null,"url":null,"abstract":"This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/CEJ-2019-03091299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 36
Abstract
This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.
期刊介绍:
The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.