GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete

Q3 Engineering Open Civil Engineering Journal Pub Date : 2019-04-27 DOI:10.28991/CEJ-2019-03091299
Azmat Ali Phul, M. J. Memon, S.N.R. Shah, A. R. Sandhu
{"title":"GGBS And Fly Ash Effects on Compressive Strength by Partial Replacement of Cement Concrete","authors":"Azmat Ali Phul, M. J. Memon, S.N.R. Shah, A. R. Sandhu","doi":"10.28991/CEJ-2019-03091299","DOIUrl":null,"url":null,"abstract":"This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.","PeriodicalId":53612,"journal":{"name":"Open Civil Engineering Journal","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Civil Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28991/CEJ-2019-03091299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 36

Abstract

This paper investigates the compressive strength properties of concrete with Ground Granulated Blast Furnace Slag (GGBS) and Fly Ash in concrete by partial replacement of cement. The incremental demand of cement in the construction field is a concern for environmental degradation, in this regard; replacement of cement is carried out with waste materials by using GGBS and Fly Ash. On optimum level of GGBS and Fly Ash was assessed with varied percentage from 0 to 30% for different curing days. Replaced concrete were tested with the slump, compaction factor, Vee-bee and compressive strength. Cement to water ratio was maintained at 0.47 for all mixes. The compressive strength tests were conducted for 3, 7, 14 and 28 days of curing on a M25 grade concrete. The results obtained from the slump, compaction factor, Vee-bee and compressive strength of concrete containing GGBS and Fly Ash was increased as the curing time increases. The workability of replaced concrete improved when slump value achieved 30% as compared to controlled one SF0 and the compressive strength obtained 26.30% improvement at SF9 as compared to SF0. The outcomes indicated that the addition of GGBS and Fly Ash enhances the workability and compressive strength which eventually improved the mechanical properties of concrete.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GGBS和粉煤灰对部分置换水泥混凝土抗压强度的影响
本文研究了部分替代水泥的矿渣粉与粉煤灰混合混凝土的抗压强度特性。在这方面,建筑领域对水泥的需求增加是环境退化的一个问题;利用矿渣矿渣和粉煤灰等废弃物替代水泥。在不同养护天数内,以0 ~ 30%的掺量确定GGBS和粉煤灰的最佳掺量。对替换后的混凝土进行坍落度、压实系数、Vee-bee和抗压强度试验。所有混合料的水灰比均保持在0.47。对M25级混凝土进行了养护3、7、14、28天的抗压强度试验。掺GGBS和粉煤灰混凝土的坍落度、压实系数、Vee-bee和抗压强度随养护时间的延长而增大。当坍落度值达到30%时,替代混凝土的和易性较控制值SF0有所改善,抗压强度在SF9时较控制值SF0提高26.30%。结果表明,掺加GGBS和粉煤灰提高了混凝土的和易性和抗压强度,最终改善了混凝土的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Open Civil Engineering Journal
Open Civil Engineering Journal Engineering-Civil and Structural Engineering
CiteScore
1.90
自引率
0.00%
发文量
17
期刊介绍: The Open Civil Engineering Journal is an Open Access online journal which publishes research, reviews/mini-reviews, letter articles and guest edited single topic issues in all areas of civil engineering. The Open Civil Engineering Journal, a peer-reviewed journal, is an important and reliable source of current information on developments in civil engineering. The topics covered in the journal include (but not limited to) concrete structures, construction materials, structural mechanics, soil mechanics, foundation engineering, offshore geotechnics, water resources, hydraulics, horology, coastal engineering, river engineering, ocean modeling, fluid-solid-structure interactions, offshore engineering, marine structures, constructional management and other civil engineering relevant areas.
期刊最新文献
Optimizing the Flexural Behavior of Bamboo Reinforced Concrete Beams Containing Cassava Peel Ash using Response Surface Methodology The Hydrodynamic Model Application for Future Coastal Zone Development in Remote Area Structural Strengthening of Insufficiently Designed Reinforced Concrete T-Beams using CFRP Composites Evaluation of Factors Affecting the Performance of Fiber-Reinforced Subgrade Soil Characteristics Under Cyclic Loading Post Fire Behavior of Structural Reinforced Concrete Member (Slab) Repairing with Various Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1