{"title":"Local Community Detection in Graph Streams with Anchors","authors":"Konstantinos Christopoulos, Georgia Baltsou, Konstantinos Tsichlas","doi":"10.3390/info14060332","DOIUrl":null,"url":null,"abstract":"Community detection in dynamic networks is a challenging research problem. One of the main obstacles is the stability issues that arise during the evolution of communities. In dynamic networks, new communities may emerge and existing communities may disappear, grow, or shrink. As a result, a community can evolve into a completely different one, making it difficult to track its evolution (this is known as the drifting/identity problem). In this paper, we focused on the evolution of a single community. Our aim was to identify the community that contains a particularly important node, called the anchor, and to track its evolution over time. In this way, we circumvented the identity problem by allowing the anchor to define the core of the relevant community. We proposed a framework that tracks the evolution of the community defined by the anchor and verified its efficiency and effectiveness through experimental evaluation.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14060332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Community detection in dynamic networks is a challenging research problem. One of the main obstacles is the stability issues that arise during the evolution of communities. In dynamic networks, new communities may emerge and existing communities may disappear, grow, or shrink. As a result, a community can evolve into a completely different one, making it difficult to track its evolution (this is known as the drifting/identity problem). In this paper, we focused on the evolution of a single community. Our aim was to identify the community that contains a particularly important node, called the anchor, and to track its evolution over time. In this way, we circumvented the identity problem by allowing the anchor to define the core of the relevant community. We proposed a framework that tracks the evolution of the community defined by the anchor and verified its efficiency and effectiveness through experimental evaluation.