{"title":"Action recognition based on kinematic representation of video data","authors":"Xin Sun, Di Huang, Yunhong Wang, Jie Qin","doi":"10.1109/ICIP.2014.7025306","DOIUrl":null,"url":null,"abstract":"The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of the image sequence. In this paper, we propose a novel kinematic descriptor, namely Static and Dynamic fEature Velocity (SDEV), which models the changes of both static and dynamic information with time for action recognition. It is not only discriminative itself, but also complementary to the existing descriptors, thus leading to more comprehensive representation of actions by their combination. Evaluated on two public databases, i.e. UCF sports and Olympic Sports, the results clearly illustrate the competency of SDEV.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"86","pages":"1530-1534"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The local space-time feature is an effective way to represent video data and achieves state-of-the-art performance in action recognition. However, in majority of cases, it only captures the static or dynamic cues of the image sequence. In this paper, we propose a novel kinematic descriptor, namely Static and Dynamic fEature Velocity (SDEV), which models the changes of both static and dynamic information with time for action recognition. It is not only discriminative itself, but also complementary to the existing descriptors, thus leading to more comprehensive representation of actions by their combination. Evaluated on two public databases, i.e. UCF sports and Olympic Sports, the results clearly illustrate the competency of SDEV.