Simone Bernardini , Giancarlo Della Ventura , Armida Sodo , Mariana Benites , Luigi Jovane , James R. Hein , Federico Lucci
{"title":"Micro-Raman mapping of critical metals (Li, Co, Ni) in a rhythmically laminated deep-ocean ferromanganese deposit","authors":"Simone Bernardini , Giancarlo Della Ventura , Armida Sodo , Mariana Benites , Luigi Jovane , James R. Hein , Federico Lucci","doi":"10.1016/j.chemer.2023.126014","DOIUrl":null,"url":null,"abstract":"<div><p>Deep-ocean ferromanganese deposits represent one of the most important strategic reservoirs for rare and critical metals. In particular, Mn-oxyhydroxides, such as asbolane and lithiophorite, concentrate large amounts of Li, Ni, and Co into polymetallic nodules and crusts. However, because of their poor crystallinity and the presence of finely intermixed additional phases, these minerals cannot be unambiguously identified by standard X-ray powder diffraction methods. In addition, Li cannot be routinely detected by standard X-ray spectroscopy techniques.</p><p>In this work we show how the spatial distribution of asbolane (the Ni-Co-rich Mn-oxide) and lithiophorite (the Li-rich Mn-oxide) across strongly inhomogeneous ferromanganese mineralizations can be investigated at high-resolution (∼ 1 μm) <em>via</em> fast and easily accessible Raman scattering measurements. Because of the strong selectivity of these minerals to the incorporation of critical metals, the obtained micro-Raman maps provide also an indirect map of the Co and Ni <em>vs</em>. Li distribution in the crusts. The described results thus show that our spectroscopic approach could represent an efficient and valuable <em>in situ</em> tool for mineral chemistry and resource evaluation of these elements in ferromanganese deposits from deep-ocean environments. This research opens a new frontier for the application of Raman spectroscopy in ore prospecting for critical minerals and metals.</p></div>","PeriodicalId":55973,"journal":{"name":"Chemie Der Erde-Geochemistry","volume":"84 2","pages":"Article 126014"},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S000928192300065X/pdfft?md5=e8f276eed9ce2859ec3b9e1fe89e0fc4&pid=1-s2.0-S000928192300065X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemie Der Erde-Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000928192300065X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep-ocean ferromanganese deposits represent one of the most important strategic reservoirs for rare and critical metals. In particular, Mn-oxyhydroxides, such as asbolane and lithiophorite, concentrate large amounts of Li, Ni, and Co into polymetallic nodules and crusts. However, because of their poor crystallinity and the presence of finely intermixed additional phases, these minerals cannot be unambiguously identified by standard X-ray powder diffraction methods. In addition, Li cannot be routinely detected by standard X-ray spectroscopy techniques.
In this work we show how the spatial distribution of asbolane (the Ni-Co-rich Mn-oxide) and lithiophorite (the Li-rich Mn-oxide) across strongly inhomogeneous ferromanganese mineralizations can be investigated at high-resolution (∼ 1 μm) via fast and easily accessible Raman scattering measurements. Because of the strong selectivity of these minerals to the incorporation of critical metals, the obtained micro-Raman maps provide also an indirect map of the Co and Ni vs. Li distribution in the crusts. The described results thus show that our spectroscopic approach could represent an efficient and valuable in situ tool for mineral chemistry and resource evaluation of these elements in ferromanganese deposits from deep-ocean environments. This research opens a new frontier for the application of Raman spectroscopy in ore prospecting for critical minerals and metals.
期刊介绍:
GEOCHEMISTRY was founded as Chemie der Erde 1914 in Jena, and, hence, is one of the oldest journals for geochemistry-related topics.
GEOCHEMISTRY (formerly Chemie der Erde / Geochemistry) publishes original research papers, short communications, reviews of selected topics, and high-class invited review articles addressed at broad geosciences audience. Publications dealing with interdisciplinary questions are particularly welcome. Young scientists are especially encouraged to submit their work. Contributions will be published exclusively in English. The journal, through very personalized consultation and its worldwide distribution, offers entry into the world of international scientific communication, and promotes interdisciplinary discussion on chemical problems in a broad spectrum of geosciences.
The following topics are covered by the expertise of the members of the editorial board (see below):
-cosmochemistry, meteoritics-
igneous, metamorphic, and sedimentary petrology-
volcanology-
low & high temperature geochemistry-
experimental - theoretical - field related studies-
mineralogy - crystallography-
environmental geosciences-
archaeometry