An Optimal Control Approach for Consensus of General Linear Time-Invariant Multi-Agent Systems

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS Journal of Dynamic Systems Measurement and Control-Transactions of the Asme Pub Date : 2021-03-15 DOI:10.1115/1.4050505
Poorya Shobeiry, M. Xin
{"title":"An Optimal Control Approach for Consensus of General Linear Time-Invariant Multi-Agent Systems","authors":"Poorya Shobeiry, M. Xin","doi":"10.1115/1.4050505","DOIUrl":null,"url":null,"abstract":"\n In this paper, the consensus problem for general linear time-invariant (LTI) multi-agent systems (MASs) with a single input is studied in a new optimal control framework. The optimal cooperative control law is designed from a modified linear quadratic regulator (LQR) method and an inverse optimal control formulation. Three cost function terms are constructed to address the consensus, control effort, and cooperative tracking, respectively. Three distinct features of this approach can be achieved. First, the optimal feedback control law is derived analytically without involving any numerical solution. Second, this formulation guarantees both asymptotic stability and optimality. Third, the cooperative control law is distributed and only requires local information based on the communication topology to enable the agents to achieve consensus and track a desired trajectory. The performance of this optimal cooperative control method is demonstrated through an example of attitude synchronization of multiple satellites.","PeriodicalId":54846,"journal":{"name":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","volume":"34 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems Measurement and Control-Transactions of the Asme","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050505","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, the consensus problem for general linear time-invariant (LTI) multi-agent systems (MASs) with a single input is studied in a new optimal control framework. The optimal cooperative control law is designed from a modified linear quadratic regulator (LQR) method and an inverse optimal control formulation. Three cost function terms are constructed to address the consensus, control effort, and cooperative tracking, respectively. Three distinct features of this approach can be achieved. First, the optimal feedback control law is derived analytically without involving any numerical solution. Second, this formulation guarantees both asymptotic stability and optimality. Third, the cooperative control law is distributed and only requires local information based on the communication topology to enable the agents to achieve consensus and track a desired trajectory. The performance of this optimal cooperative control method is demonstrated through an example of attitude synchronization of multiple satellites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一般线性定常多智能体系统一致性的最优控制方法
本文在一种新的最优控制框架下,研究了具有单输入的一般线性时不变多智能体系统的一致性问题。采用改进的线性二次调节器(LQR)方法和逆最优控制公式设计了最优协同控制律。构建了三个成本函数项,分别处理共识、控制努力和合作跟踪。这种方法可以实现三个不同的特征。首先,在不涉及任何数值解的情况下,解析导出了最优反馈控制律。其次,该公式保证了渐近稳定性和最优性。第三,协作控制律是分布式的,只需要基于通信拓扑的局部信息,就能使agent达成共识并跟踪期望的轨迹。通过多卫星姿态同步实例验证了该优化协同控制方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.80%
发文量
79
审稿时长
24.0 months
期刊介绍: The Journal of Dynamic Systems, Measurement, and Control publishes theoretical and applied original papers in the traditional areas implied by its name, as well as papers in interdisciplinary areas. Theoretical papers should present new theoretical developments and knowledge for controls of dynamical systems together with clear engineering motivation for the new theory. New theory or results that are only of mathematical interest without a clear engineering motivation or have a cursory relevance only are discouraged. "Application" is understood to include modeling, simulation of realistic systems, and corroboration of theory with emphasis on demonstrated practicality.
期刊最新文献
Spiking-Free Disturbance Observer-Based Sliding-Mode Control for Mismatched Uncertain System Current Imbalance in Dissimilar Parallel-Connected Batteries and the Fate of Degradation Convergence Self-Optimizing Vapor Compression Cycles Online With Bayesian Optimization Under Local Search Region Constraints Nonlinear Temperature Control of Additive Friction Stir Deposition Evaluated On an Echo State Network Closed-Loop Control and Plant Co-Design of a Hybrid Electric Unmanned Air Vehicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1