Lateral silicon nanowire based standard cell design for higher performance

Om. Prakash, Mohit Sharma, B. Anand, A. Saxena, S. Manhas, S. Maheshwaram
{"title":"Lateral silicon nanowire based standard cell design for higher performance","authors":"Om. Prakash, Mohit Sharma, B. Anand, A. Saxena, S. Manhas, S. Maheshwaram","doi":"10.1109/APCCAS.2016.7803915","DOIUrl":null,"url":null,"abstract":"At deep nano-scale nodes Silicon Nanowire field effect transistor (SiNW FET) imparts best performance. However, analysis of SiNW FET based circuit design is lacking in existing literature. In this study, we design a standard cell library for advanced 10nm lateral SiNW FET technology in super threshold regime. For this, we create a Verilog-A compact model. Our compact Verilog-A model includes all the short channel effect as well as the geometrical dependent parasitics, which are crucial for short channel devices. The model is well calibrated with TCAD and reported fabricated data. The standard cell library developed comprise INVERTER, NAND, and NOR gate cells. Finally, we compared the standard cell performance to FinFET based standard cell. We found that the Si NW CMOS based standard cells have ∼3–4X, ∼2–3X, and 3X performance in terms of power dissipation, energy-delay product and power delay product respectively compared to FinFET based designs.","PeriodicalId":6495,"journal":{"name":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.2016.7803915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

At deep nano-scale nodes Silicon Nanowire field effect transistor (SiNW FET) imparts best performance. However, analysis of SiNW FET based circuit design is lacking in existing literature. In this study, we design a standard cell library for advanced 10nm lateral SiNW FET technology in super threshold regime. For this, we create a Verilog-A compact model. Our compact Verilog-A model includes all the short channel effect as well as the geometrical dependent parasitics, which are crucial for short channel devices. The model is well calibrated with TCAD and reported fabricated data. The standard cell library developed comprise INVERTER, NAND, and NOR gate cells. Finally, we compared the standard cell performance to FinFET based standard cell. We found that the Si NW CMOS based standard cells have ∼3–4X, ∼2–3X, and 3X performance in terms of power dissipation, energy-delay product and power delay product respectively compared to FinFET based designs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
横向硅纳米线为基础的标准电池设计,更高的性能
在深纳米级节点上,硅纳米线场效应晶体管(SiNW FET)具有最佳性能。然而,现有文献缺乏对基于SiNW场效应管的电路设计的分析。在这项研究中,我们设计了一个标准细胞库,用于超阈值状态下先进的10nm横向SiNW场效应管技术。为此,我们创建了Verilog-A紧凑型模型。我们紧凑的Verilog-A模型包括所有的短通道效应以及几何相关的寄生效应,这对短通道器件至关重要。该模型是很好的校准与TCAD和报告的虚构数据。开发的标准单元库包括逆变器、NAND和NOR栅极单元。最后,我们比较了标准电池与基于FinFET的标准电池的性能。我们发现,与基于FinFET的设计相比,基于Si NW CMOS的标准电池在功耗、能量延迟积和功率延迟积方面分别具有~ 3-4X、~ 2-3X和3X的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IoT and Blockchain: Technologies, Challenges, and Applications Teaching Practice Platform and Innovation Course Construction for Postgraduate Majoring in Electronics Information FPGA implementation of edge detection for Sobel operator in eight directions Analog integrated audio frequency synthesizer Analysis of non-ideal effects and electrochemical impedance spectroscopy of arrayed flexible NiO-based pH sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1