F. Cappelli, L. Consolino, G. Campo, I. Galli, D. Mazzotti, A. Campa, M. S. de Cumis, P. C. Pastor, R. Eramo, M. Rösch, M. Beck, G. Scalari, J. Faist, P. De Natale, S. Bartalini
{"title":"Retrieving the Phase Relation of a Quantum Cascade Laser Frequency Comb and Reconstructing its Emission Profile","authors":"F. Cappelli, L. Consolino, G. Campo, I. Galli, D. Mazzotti, A. Campa, M. S. de Cumis, P. C. Pastor, R. Eramo, M. Rösch, M. Beck, G. Scalari, J. Faist, P. De Natale, S. Bartalini","doi":"10.1109/CLEOE-EQEC.2019.8873176","DOIUrl":null,"url":null,"abstract":"In the direction of miniaturizing and expanding optical frequency comb (FC) operation in the infrared (IR), the most relevant results have recently been achieved with quantum cascade lasers (QCLs) [1–4]. By using broadband Fabry-Perot QCLs [5] designed to have a low group velocity dispersion, FC generation was demonstrated in fully free-running operation (QCL-combs) [6,7]. Various techniques to characterize the emission of mid- and far-infrared QCL-combs have been recently developed [6,8–12].","PeriodicalId":6714,"journal":{"name":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","volume":"27 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEOE-EQEC.2019.8873176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the direction of miniaturizing and expanding optical frequency comb (FC) operation in the infrared (IR), the most relevant results have recently been achieved with quantum cascade lasers (QCLs) [1–4]. By using broadband Fabry-Perot QCLs [5] designed to have a low group velocity dispersion, FC generation was demonstrated in fully free-running operation (QCL-combs) [6,7]. Various techniques to characterize the emission of mid- and far-infrared QCL-combs have been recently developed [6,8–12].