Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach

Japhet C. Hipolito, Alvin Sarraga Alon, Ryndel V. Amorado, Maricel Grace Z. Fernando, Poul Isaac C. De Chavez
{"title":"Detection of Underwater Marine Plastic Debris Using an Augmented Low Sample Size Dataset for Machine Vision System: A Deep Transfer Learning Approach","authors":"Japhet C. Hipolito, Alvin Sarraga Alon, Ryndel V. Amorado, Maricel Grace Z. Fernando, Poul Isaac C. De Chavez","doi":"10.1109/SCOReD53546.2021.9652703","DOIUrl":null,"url":null,"abstract":"Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.","PeriodicalId":6762,"journal":{"name":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","volume":"55 1","pages":"82-86"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 19th Student Conference on Research and Development (SCOReD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCOReD53546.2021.9652703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Waste in aquatic environments devastates aquatic habitats and offers a tall environmental and economical risk. Machine Vision might play a role in resolving this issue by detecting and finally eliminating debris. Using an augmented low sample size from a publicly available collection of underwater plastic waste, this research employed a YOLOv3 deep-learning system to visually recognize debris in realistic underwater environments. The detection model has a training and validation accuracy of 98.026 % and 94.582 %, respectively, according to the study's findings, with an mAP value of 98.15%. With its effectiveness in detecting underwater plastic waste, the recommended model is suitable for a variety of machine vision systems. The system has a 100% testing accuracy, with detection per frame accuracy ranging from 60.59% to 98.89%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强低样本数据集的水下海洋塑料碎片检测:一种深度迁移学习方法
水生环境中的废物破坏水生生境,并带来巨大的环境和经济风险。机器视觉可以通过检测并最终消除碎片来解决这个问题。本研究使用从公开收集的水下塑料废物中增加的低样本量,采用YOLOv3深度学习系统在真实的水下环境中视觉识别碎片。根据研究结果,该检测模型的训练和验证准确率分别为98.026%和94.582%,mAP值为98.15%。由于该模型在检测水下塑料垃圾方面的有效性,因此适用于各种机器视觉系统。系统具有100%的检测精度,每帧检测精度在60.59% ~ 98.89%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Sizing of Solar Panel and Battery Storage for A Smart Aquaponic System eMarket for Local Farmers Advanced Encryption Standard Mobile Application to Improve College Entrance Security in UNIMAS Automated DJ Pad Audio Mashups Playback Compositions in Computer Music Utilizing Harmony Search Algorithm Ensembles for Text-Based Sarcasm Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1