{"title":"Suppressing Chest Radiograph Ribs for Improving Lung Nodule Visibility by using Circular Window Adaptive Median Outlier (CWAMO)","authors":"Dnyaneshwar Kanade, J. Helonde","doi":"10.14569/ijacsa.2023.0140359","DOIUrl":null,"url":null,"abstract":"— Chest radiograph ribs obstruct lung nodules. To see the nodule under the chest radiograph ribs, remove or suppress them. The paper describes a circular median filter approach for finding outliers in chest radiographs. The method uses 147 Japanese Society of Radiological Technology x-ray pictures (JSRT). Pixels with intensities two standard deviations above the median are median outliers. Contrast-Limited Adaptive Histogram Equalization enhances nodule visibility (CLAHE). The method is tested on modest chest radiographs and compared to the Budapest University Bone Shadow Eliminated X-Ray Dataset methodology. The initial test uses 50 modest chest radiographs (Test 1). The proposed approach is applied after active shape modelling (ASM) lung segmentation. True positive nodules are seen on 89% of chest radiographs of various subtleties. Test-2 and Test-3 used 20 subtlety-level photos. In Test-2, the peak signal-to-noise ratio (PSNR), mean-to-standard deviation ratio (MSR), and universal image quality index (IQI) are evaluated for the full image and compared to the existing algorithm. For all three parameters, the suggested technique outperforms the algorithm. Test-3 computes nodule MSR and compares it to Budapest University's Bone Shadow Eliminated Dataset and original chest radiographs. The new algorithm improved nodule area contrast by 3.83% and 23.94% compared to the original chest radiograph. This approach improves chest radiograph nodule visualization.","PeriodicalId":13824,"journal":{"name":"International Journal of Advanced Computer Science and Applications","volume":"27 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Computer Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14569/ijacsa.2023.0140359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
— Chest radiograph ribs obstruct lung nodules. To see the nodule under the chest radiograph ribs, remove or suppress them. The paper describes a circular median filter approach for finding outliers in chest radiographs. The method uses 147 Japanese Society of Radiological Technology x-ray pictures (JSRT). Pixels with intensities two standard deviations above the median are median outliers. Contrast-Limited Adaptive Histogram Equalization enhances nodule visibility (CLAHE). The method is tested on modest chest radiographs and compared to the Budapest University Bone Shadow Eliminated X-Ray Dataset methodology. The initial test uses 50 modest chest radiographs (Test 1). The proposed approach is applied after active shape modelling (ASM) lung segmentation. True positive nodules are seen on 89% of chest radiographs of various subtleties. Test-2 and Test-3 used 20 subtlety-level photos. In Test-2, the peak signal-to-noise ratio (PSNR), mean-to-standard deviation ratio (MSR), and universal image quality index (IQI) are evaluated for the full image and compared to the existing algorithm. For all three parameters, the suggested technique outperforms the algorithm. Test-3 computes nodule MSR and compares it to Budapest University's Bone Shadow Eliminated Dataset and original chest radiographs. The new algorithm improved nodule area contrast by 3.83% and 23.94% compared to the original chest radiograph. This approach improves chest radiograph nodule visualization.
期刊介绍:
IJACSA is a scholarly computer science journal representing the best in research. Its mission is to provide an outlet for quality research to be publicised and published to a global audience. The journal aims to publish papers selected through rigorous double-blind peer review to ensure originality, timeliness, relevance, and readability. In sync with the Journal''s vision "to be a respected publication that publishes peer reviewed research articles, as well as review and survey papers contributed by International community of Authors", we have drawn reviewers and editors from Institutions and Universities across the globe. A double blind peer review process is conducted to ensure that we retain high standards. At IJACSA, we stand strong because we know that global challenges make way for new innovations, new ways and new talent. International Journal of Advanced Computer Science and Applications publishes carefully refereed research, review and survey papers which offer a significant contribution to the computer science literature, and which are of interest to a wide audience. Coverage extends to all main-stream branches of computer science and related applications