Xun Li, Geoff Bull, R. Coe, Sakda Eamkulworapong, J. Scarrow, Michael Salim, M. Schaefer, X. Sirault
{"title":"High-Throughput Plant Height Estimation from RGB Images Acquired with Aerial Platforms: A 3D Point Cloud Based Approach","authors":"Xun Li, Geoff Bull, R. Coe, Sakda Eamkulworapong, J. Scarrow, Michael Salim, M. Schaefer, X. Sirault","doi":"10.1109/DICTA47822.2019.8945911","DOIUrl":null,"url":null,"abstract":"With the development of computer vision technologies, using images acquired by aerial platforms to measure large scale agricultural fields has been increasingly studied. In order to provide a more time efficient, light weight and low cost solution, in this paper we present a highly automated processing pipeline that performs plant height estimation based on a dense point cloud generated from aerial RGB images, requiring only a single flight. A previously acquired terrain model is not required as input. The process extracts a segmented plant layer and bare ground layer. Ground height estimation achieves sub 10cm accuracy. High throughput plant height estimation has been performed and results are compared with LiDAR based measurements.","PeriodicalId":6696,"journal":{"name":"2019 Digital Image Computing: Techniques and Applications (DICTA)","volume":"42 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA47822.2019.8945911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the development of computer vision technologies, using images acquired by aerial platforms to measure large scale agricultural fields has been increasingly studied. In order to provide a more time efficient, light weight and low cost solution, in this paper we present a highly automated processing pipeline that performs plant height estimation based on a dense point cloud generated from aerial RGB images, requiring only a single flight. A previously acquired terrain model is not required as input. The process extracts a segmented plant layer and bare ground layer. Ground height estimation achieves sub 10cm accuracy. High throughput plant height estimation has been performed and results are compared with LiDAR based measurements.