{"title":"TUNABLE HIGH-Q PLASMONIC METASURFACE WITH MULTIPLE SURFACE LATTICE RESONANCES (INVITED)","authors":"Nanxuan Wu, Yiyun Zhang, Hongbin Ma, Hongsheng Chen, Haoliang Qian","doi":"10.2528/pier21112006","DOIUrl":null,"url":null,"abstract":"Micro-nano opto-electronic devices are demanded to be highly efficient and capable of multiple working wavelengths in several light-matter interaction applications, which is a challenge to surface plasmonics owing to the relatively higher intrinsic loss and larger dispersion. To cross the barriers, a plasmonic metasurface combining both high Q-factors (highest Q > 800) and multiple resonant wavelengths is proposed by arranging step-staged pyramid units in lattice modes. Different numerical relations for nonlinear frequency conversions have been constructed because of its strong tunability. Also, characteristics of high radiation efficiency (> 50%) and large localized optical density of state (> 104) have been proved through the numerical simulation. Such tunable high-Q metasurface can be implemented to quantum nonlinear process and enable the strong light-matter interaction devices into reality.","PeriodicalId":90705,"journal":{"name":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research Symposium : [proceedings]. Progress in Electromagnetics Research Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2528/pier21112006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Micro-nano opto-electronic devices are demanded to be highly efficient and capable of multiple working wavelengths in several light-matter interaction applications, which is a challenge to surface plasmonics owing to the relatively higher intrinsic loss and larger dispersion. To cross the barriers, a plasmonic metasurface combining both high Q-factors (highest Q > 800) and multiple resonant wavelengths is proposed by arranging step-staged pyramid units in lattice modes. Different numerical relations for nonlinear frequency conversions have been constructed because of its strong tunability. Also, characteristics of high radiation efficiency (> 50%) and large localized optical density of state (> 104) have been proved through the numerical simulation. Such tunable high-Q metasurface can be implemented to quantum nonlinear process and enable the strong light-matter interaction devices into reality.