{"title":"Rapid Deployment Indoor Localization without Prior Human Participation","authors":"Han Xu, Zimu Zhou, Longfei Shangguan","doi":"10.1109/LCN.2016.89","DOIUrl":null,"url":null,"abstract":"In this work, we propose RAD, a RApid Deployment localization framework without human sampling. The basic idea of RAD is to automatically generate a fingerprint database through space partition, of which each cell is fingerprinted by its maximum influence APs. Based on this robust location indicator, fine-grained localization can be achieved by a discretized particle filter utilizing sensor data fusion. We devise techniques for CIVD-based field division, graph-based particle filter, EM-based individual character learning, and build a prototype that runs on commodity devices. Extensive experiments show that RAD provides a comparable performance to the state-of-the-art RSS-based methods while relieving it of prior human participation.","PeriodicalId":6864,"journal":{"name":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","volume":"29 1","pages":"547-550"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 41st Conference on Local Computer Networks (LCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LCN.2016.89","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we propose RAD, a RApid Deployment localization framework without human sampling. The basic idea of RAD is to automatically generate a fingerprint database through space partition, of which each cell is fingerprinted by its maximum influence APs. Based on this robust location indicator, fine-grained localization can be achieved by a discretized particle filter utilizing sensor data fusion. We devise techniques for CIVD-based field division, graph-based particle filter, EM-based individual character learning, and build a prototype that runs on commodity devices. Extensive experiments show that RAD provides a comparable performance to the state-of-the-art RSS-based methods while relieving it of prior human participation.