Knowing without telling: integrating sensing and mapping for creating an artificial companion

Marjan Alirezaie, Franziska Klügl-Frohnmeyer, A. Loutfi
{"title":"Knowing without telling: integrating sensing and mapping for creating an artificial companion","authors":"Marjan Alirezaie, Franziska Klügl-Frohnmeyer, A. Loutfi","doi":"10.1145/2996913.2996961","DOIUrl":null,"url":null,"abstract":"This paper depicts a sensor-based map navigation approach which targets users, who due to disabilities or lack of technical knowledge are currently not in the focus of map system developments for personalized information. What differentiates our approach from the state-of-art mostly integrating localized social media data, is that our vision is to integrate real time sensor generated data that indicates the situation of different phenomena (such as the physiological functions of the body) related to the user. The challenge hereby is mainly related to knowledge representation and integration. The tentative impact of our vision for future navigation systems is reflected within a scenario.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper depicts a sensor-based map navigation approach which targets users, who due to disabilities or lack of technical knowledge are currently not in the focus of map system developments for personalized information. What differentiates our approach from the state-of-art mostly integrating localized social media data, is that our vision is to integrate real time sensor generated data that indicates the situation of different phenomena (such as the physiological functions of the body) related to the user. The challenge hereby is mainly related to knowledge representation and integration. The tentative impact of our vision for future navigation systems is reflected within a scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不言而知:集成传感和绘图,创造一个人造伴侣
本文描述了一种基于传感器的地图导航方法,其目标用户由于残疾或缺乏技术知识,目前不是地图系统开发的重点。我们的方法与目前最先进的主要集成本地化社交媒体数据的方法不同之处在于,我们的愿景是集成实时传感器生成的数据,这些数据表明与用户相关的不同现象(如身体的生理功能)的情况。这里的挑战主要与知识表示和集成有关。我们对未来导航系统的设想的初步影响反映在一个场景中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1