H. Ding, Yizhan Wang, Hao Li, Cui Zhao, Ge Wang, Wei Xi, Jizhong Zhao
{"title":"UltraSpeech: Speech Enhancement by Interaction between Ultrasound and Speech","authors":"H. Ding, Yizhan Wang, Hao Li, Cui Zhao, Ge Wang, Wei Xi, Jizhong Zhao","doi":"10.1145/3550303","DOIUrl":null,"url":null,"abstract":"Speech enhancement can bene � t lots of practical voice-based interaction applications, where the goal is to generate clean speech from noisy ambient conditions. This paper presents a practical design, namely UltraSpeech, to enhance speech by exploring the correlation between the ultrasound (pro � led articulatory gestures) and speech. UltraSpeech uses a commodity smartphone to emit the ultrasound and collect the composed acoustic signal for analysis. We design a complex masking framework to deal with complex-valued spectrograms, incorporating the magnitude and phase recti � cation of speech simultaneously. We further introduce an interaction module to share information between ultrasound and speech two branches and thus enhance their discrimination capabilities. Extensive experiments demonstrate that UltraSpeech increases the Scale Invariant SDR by 12dB, improves the speech intelligibility and quality e � ectively, and is capable to generalize to unknown speakers.","PeriodicalId":20463,"journal":{"name":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3550303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Speech enhancement can bene � t lots of practical voice-based interaction applications, where the goal is to generate clean speech from noisy ambient conditions. This paper presents a practical design, namely UltraSpeech, to enhance speech by exploring the correlation between the ultrasound (pro � led articulatory gestures) and speech. UltraSpeech uses a commodity smartphone to emit the ultrasound and collect the composed acoustic signal for analysis. We design a complex masking framework to deal with complex-valued spectrograms, incorporating the magnitude and phase recti � cation of speech simultaneously. We further introduce an interaction module to share information between ultrasound and speech two branches and thus enhance their discrimination capabilities. Extensive experiments demonstrate that UltraSpeech increases the Scale Invariant SDR by 12dB, improves the speech intelligibility and quality e � ectively, and is capable to generalize to unknown speakers.