Enhanced overloaded code division multiple access for network on chip

IF 1.1 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IET Computers and Digital Techniques Pub Date : 2021-12-07 DOI:10.1049/cdt2.12039
Behnam Vakili, Morteza Gholipour
{"title":"Enhanced overloaded code division multiple access for network on chip","authors":"Behnam Vakili,&nbsp;Morteza Gholipour","doi":"10.1049/cdt2.12039","DOIUrl":null,"url":null,"abstract":"<p>The Code-division multiple access (CDMA) method is commonly used as the network infrastructure in multi-core chips. One of its advantages is the simultaneous connection of all network components. Another advantage is the constant delay of this method. On the other hand, one drawback is that the number of transmitters is limited to the number of encoding bits. In this study, the authors used the combination of Walsh codes and their inverses, as well as the simultaneous application of the time-division multiple access (TDMA) method, to increase the transmission capacity of this protocol more than four times the standard mode. In the proposed design, although the circuit area does not increase significantly, a fourfold increase in the throughput of the CDMA network is seen. Using the method proposed in this study, it will be possible to increase the capacity further.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"16 2-3","pages":"45-53"},"PeriodicalIF":1.1000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12039","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12039","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 1

Abstract

The Code-division multiple access (CDMA) method is commonly used as the network infrastructure in multi-core chips. One of its advantages is the simultaneous connection of all network components. Another advantage is the constant delay of this method. On the other hand, one drawback is that the number of transmitters is limited to the number of encoding bits. In this study, the authors used the combination of Walsh codes and their inverses, as well as the simultaneous application of the time-division multiple access (TDMA) method, to increase the transmission capacity of this protocol more than four times the standard mode. In the proposed design, although the circuit area does not increase significantly, a fourfold increase in the throughput of the CDMA network is seen. Using the method proposed in this study, it will be possible to increase the capacity further.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
片上网络的增强型重载码分多址
码分多址(CDMA)方式是多核芯片中常用的网络基础设施。它的优点之一是所有网络组件的同时连接。这种方法的另一个优点是延时不变。另一方面,一个缺点是发射机的数量受限于编码位的数量。在本研究中,作者利用沃尔什码及其逆码的组合,以及时分多址(TDMA)方法的同时应用,使该协议的传输容量比标准模式增加了四倍以上。在提出的设计中,虽然电路面积没有显著增加,但CDMA网络的吞吐量增加了四倍。使用本研究提出的方法,将有可能进一步提高容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computers and Digital Techniques
IET Computers and Digital Techniques 工程技术-计算机:理论方法
CiteScore
3.50
自引率
0.00%
发文量
12
审稿时长
>12 weeks
期刊介绍: IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test. The key subject areas of interest are: Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation. Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance. Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues. Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware. Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting. Case Studies: emerging applications, applications in industrial designs, and design frameworks.
期刊最新文献
E-Commerce Logistics Software Package Tracking and Route Planning and Optimization System of Embedded Technology Based on the Intelligent Era A Configurable Accelerator for CNN-Based Remote Sensing Object Detection on FPGAs A FPGA Accelerator of Distributed A3C Algorithm with Optimal Resource Deployment An Efficient RTL Design for a Wearable Brain–Computer Interface Adaptive Shrink and Shard Architecture Design for Blockchain Storage Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1