Predicting interactions and contexts with context trees

Alasdair Thomason, N. Griffiths, Victor Sanchez
{"title":"Predicting interactions and contexts with context trees","authors":"Alasdair Thomason, N. Griffiths, Victor Sanchez","doi":"10.1145/2996913.2996993","DOIUrl":null,"url":null,"abstract":"Predicting the future actions of individuals from geospatial data has the potential to provide a basis for tailored services. This work presents the Predictive Context Tree (PCT), a new hierarchical classifier based on the Context Tree summary model [8]. The PCT is capable of predicting the future contexts and locations of individuals to provide a basis for understanding not only where a user will be, but also what type of activity they will be performing. Through a comparison to established techniques, this paper demonstrates the applicability of the PCT by showing increased accuracies for location prediction, and increased utility through context prediction.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Predicting the future actions of individuals from geospatial data has the potential to provide a basis for tailored services. This work presents the Predictive Context Tree (PCT), a new hierarchical classifier based on the Context Tree summary model [8]. The PCT is capable of predicting the future contexts and locations of individuals to provide a basis for understanding not only where a user will be, but also what type of activity they will be performing. Through a comparison to established techniques, this paper demonstrates the applicability of the PCT by showing increased accuracies for location prediction, and increased utility through context prediction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用上下文树预测交互和上下文
根据地理空间数据预测个人未来的行动,有可能为量身定制的服务提供基础。本文提出了预测上下文树(PCT),一种基于上下文树摘要模型[8]的新的分层分类器。PCT能够预测个人未来的环境和位置,不仅为了解用户将在哪里,而且为了解他们将从事何种活动提供基础。通过与现有技术的比较,本文展示了PCT的适用性,显示了PCT在位置预测方面的准确性提高,并通过上下文预测提高了实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1