{"title":"Chiral Majorana Hinge Modes in Superconducting Dirac Materials","authors":"Bo Fu, Zi-Ang Hu, Chang-An Li, Jian Li, S. Shen","doi":"10.1103/PhysRevB.103.L180504","DOIUrl":null,"url":null,"abstract":"Chiral Majorana hinge modes are characteristic of a second-order topological superconductor in three dimensions. Here we systematically study pairing symmetry in the point group D_{2h}, and find that the leading pairing channels can be of s-, d-, and s+id-wave pairing in Dirac materials. Except for the odd-parity s-wave pairing superconductivity, the s+id-wave pairing superconductor is topologically nontrivial and possesses Majorana hinge and surface modes. The chiral Majorana hinge modes can be characterized by a winding number of the quadrupole moment, or quantized quadruple moment at the symmetrically invariant point. Our findings suggest the strong spin-orbital coupling, crystalline symmetries and electron-electron interaction in the Dirac materials may provide a microscopic mechanism to realize chiral Majorana hinge modes without utilizing the proximity effect or external fields.","PeriodicalId":8514,"journal":{"name":"arXiv: Superconductivity","volume":"118 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Superconductivity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PhysRevB.103.L180504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Chiral Majorana hinge modes are characteristic of a second-order topological superconductor in three dimensions. Here we systematically study pairing symmetry in the point group D_{2h}, and find that the leading pairing channels can be of s-, d-, and s+id-wave pairing in Dirac materials. Except for the odd-parity s-wave pairing superconductivity, the s+id-wave pairing superconductor is topologically nontrivial and possesses Majorana hinge and surface modes. The chiral Majorana hinge modes can be characterized by a winding number of the quadrupole moment, or quantized quadruple moment at the symmetrically invariant point. Our findings suggest the strong spin-orbital coupling, crystalline symmetries and electron-electron interaction in the Dirac materials may provide a microscopic mechanism to realize chiral Majorana hinge modes without utilizing the proximity effect or external fields.