The Adressa dataset for news recommendation

J. Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, Xiaomeng Su
{"title":"The Adressa dataset for news recommendation","authors":"J. Gulla, Lemei Zhang, Peng Liu, Özlem Özgöbek, Xiaomeng Su","doi":"10.1145/3106426.3109436","DOIUrl":null,"url":null,"abstract":"Datasets for recommender systems are few and often inadequate for the contextualized nature of news recommendation. News recommender systems are both time- and location-dependent, make use of implicit signals, and often include both collaborative and content-based components. In this paper we introduce the Adressa compact news dataset, which supports all these aspects of news recommendation. The dataset comes in two versions, the large 20M dataset of 10 weeks' traffic on Adresseavisen's news portal, and the small 2M dataset of only one week's traffic. We explain the structure of the dataset and discuss how it can be used in advanced news recommender systems.","PeriodicalId":20685,"journal":{"name":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"138","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Web Intelligence, Mining and Semantics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3106426.3109436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 138

Abstract

Datasets for recommender systems are few and often inadequate for the contextualized nature of news recommendation. News recommender systems are both time- and location-dependent, make use of implicit signals, and often include both collaborative and content-based components. In this paper we introduce the Adressa compact news dataset, which supports all these aspects of news recommendation. The dataset comes in two versions, the large 20M dataset of 10 weeks' traffic on Adresseavisen's news portal, and the small 2M dataset of only one week's traffic. We explain the structure of the dataset and discuss how it can be used in advanced news recommender systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新闻推荐的addressa数据集
推荐系统的数据集很少,而且往往不足以满足新闻推荐的情境化性质。新闻推荐系统依赖于时间和地点,使用隐式信号,通常包括协作和基于内容的组件。在本文中,我们引入了支持所有这些方面的新闻推荐的addressa压缩新闻数据集。该数据集有两个版本,大型的2000万数据集记录了Adresseavisen新闻门户网站10周的流量,而小型的200万数据集只记录了一周的流量。我们解释了数据集的结构,并讨论了如何将其用于高级新闻推荐系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
WIMS 2020: The 10th International Conference on Web Intelligence, Mining and Semantics, Biarritz, France, June 30 - July 3, 2020 A deep learning approach for web service interactions Partial sums-based P-Rank computation in information networks Mining ordinal data under human response uncertainty Haste makes waste: a case to favour voting bots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1