Effect of air density on kite power

Kumari Sanno, K. S. Rao
{"title":"Effect of air density on kite power","authors":"Kumari Sanno, K. S. Rao","doi":"10.1109/TAPENERGY.2015.7229605","DOIUrl":null,"url":null,"abstract":"Many researchers have analyzed and gave mathematical equations for the motion of the kite. Different mathematical models for the estimation of kite power has been made by Lloyd, Houska, Argatov I. et al., Jerome Marchand, Pauli Rautakorpi et al. between 1980 to 2013. However in their models for estimation of power and maximum power from kite, they have considered density as constant and is equal to the density of air at the sea level (density of air equals to 1.225 Kg/m3). In this paper, effect of air density on kites flying at high altitude was considered and calculations were made for the estimation of maximum power with air density at the sea level and the air density at the flying height of the kite. For this purpose data given by Pauli Rautakorpi et al. has been considered for estimation of maximum power of the kite. Results were compared for each of the five models, density being constant and density varying with height of the kite. All the five models are compared each other for maximum power with actual air density.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"9 1","pages":"132-137"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many researchers have analyzed and gave mathematical equations for the motion of the kite. Different mathematical models for the estimation of kite power has been made by Lloyd, Houska, Argatov I. et al., Jerome Marchand, Pauli Rautakorpi et al. between 1980 to 2013. However in their models for estimation of power and maximum power from kite, they have considered density as constant and is equal to the density of air at the sea level (density of air equals to 1.225 Kg/m3). In this paper, effect of air density on kites flying at high altitude was considered and calculations were made for the estimation of maximum power with air density at the sea level and the air density at the flying height of the kite. For this purpose data given by Pauli Rautakorpi et al. has been considered for estimation of maximum power of the kite. Results were compared for each of the five models, density being constant and density varying with height of the kite. All the five models are compared each other for maximum power with actual air density.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气密度对风筝动力的影响
许多研究者已经分析并给出了风筝运动的数学方程。Lloyd, Houska, Argatov I. et al., Jerome Marchand, Pauli Rautakorpi等人在1980年至2013年间建立了不同的风筝功率估算数学模型。然而,在他们估算风筝的功率和最大功率的模型中,他们认为密度是常数,等于海平面上的空气密度(空气密度等于1.225 Kg/m3)。本文考虑了空气密度对高空风筝飞行的影响,并计算了海平面空气密度和风筝飞行高度空气密度对最大功率的估计。为此,考虑了Pauli Rautakorpi等人给出的数据来估计风筝的最大功率。结果比较了五种模型,密度是恒定的,密度随风筝的高度而变化。所有这五种型号的最大功率与实际空气密度相互比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduction of common mode voltage in three phase inverter A novel topology of forward-flyback PFC converter with constant on-time control Online benefit optimization in a liberalized/free microgrid market model UHVDC transmission with dedicated metallic return Bridgeless flyback converter for low power lighting application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1