Water level recognition based on strong edge and sparse constraints

IF 4.3 Q2 Environmental Science Journal of Water Supply Research and Technology-aqua Pub Date : 2023-08-24 DOI:10.2166/ws.2023.221
Guoheng Ren, Wei Wang, Hanyu Wei, Xiaofeng Li
{"title":"Water level recognition based on strong edge and sparse constraints","authors":"Guoheng Ren, Wei Wang, Hanyu Wei, Xiaofeng Li","doi":"10.2166/ws.2023.221","DOIUrl":null,"url":null,"abstract":"\n \n This paper takes the intelligent water level recognition instrument of Qingming Shanghe Park in Kaifeng as the experimental object, introduces the algorithm of strong edge and sparse constraint into the intelligent water level recognition instrument, and compares the recognition effect of the intelligent water level recognition instrument before and after the introduction of strong edge and sparse constraint algorithms. The results showed that the clarity value was approximately 10% higher, and the recognition speed was also significantly improved. The improvement of recognition speed can effectively promote the work efficiency of the whole method. Strong edges and sparse constraints can effectively improve the accuracy of water level identification, provide scientific and effective data and information for subsequent water resource management, and meet the needs of water resource managers to effectively grasp the law of water level. This can provide technical support for identification methods in other fields, and the ultimate goal is to promote the protection and management of water resources and reduce the harm of natural disasters on people.","PeriodicalId":17553,"journal":{"name":"Journal of Water Supply Research and Technology-aqua","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply Research and Technology-aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/ws.2023.221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This paper takes the intelligent water level recognition instrument of Qingming Shanghe Park in Kaifeng as the experimental object, introduces the algorithm of strong edge and sparse constraint into the intelligent water level recognition instrument, and compares the recognition effect of the intelligent water level recognition instrument before and after the introduction of strong edge and sparse constraint algorithms. The results showed that the clarity value was approximately 10% higher, and the recognition speed was also significantly improved. The improvement of recognition speed can effectively promote the work efficiency of the whole method. Strong edges and sparse constraints can effectively improve the accuracy of water level identification, provide scientific and effective data and information for subsequent water resource management, and meet the needs of water resource managers to effectively grasp the law of water level. This can provide technical support for identification methods in other fields, and the ultimate goal is to promote the protection and management of water resources and reduce the harm of natural disasters on people.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强边缘和稀疏约束的水位识别
本文以开封市清明上河公园智能水位识别仪为实验对象,将强边缘和稀疏约束算法引入智能水位识别仪,并比较了引入强边缘和稀疏约束算法前后智能水位识别仪的识别效果。结果表明,清晰度值提高了约10%,识别速度也显著提高。识别速度的提高可以有效地提高整个方法的工作效率。强边缘和稀疏约束可以有效提高水位识别的精度,为后续水资源管理提供科学有效的数据和信息,满足水资源管理者有效掌握水位变化规律的需要。这可以为其他领域的识别方法提供技术支持,最终目的是促进水资源的保护和管理,减少自然灾害对人类的危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
74
审稿时长
4.5 months
期刊介绍: Journal of Water Supply: Research and Technology - Aqua publishes peer-reviewed scientific & technical, review, and practical/ operational papers dealing with research and development in water supply technology and management, including economics, training and public relations on a national and international level.
期刊最新文献
Incorporating economy and water demand rate uncertainty into decision-making for agricultural water allocation during droughts Development of water resources protection planning and environmental design in urban water conservancy landscape based on ecological concept Application of water resource economic management model in agricultural structure adjustment A synoptic assessment of groundwater quality in high water-demand regions of coastal Andhra Pradesh, India Many-objective optimisation tool for the design of district metered areas in pumped water distribution networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1