A new method for structural safety and reliability analysis of offshore wind turbines

IF 1 3区 工程技术 Q4 ENGINEERING, CIVIL Proceedings of the Institution of Civil Engineers-Maritime Engineering Pub Date : 2021-11-08 DOI:10.1680/jmaen.2021.019
Yingguang Wang
{"title":"A new method for structural safety and reliability analysis of offshore wind turbines","authors":"Yingguang Wang","doi":"10.1680/jmaen.2021.019","DOIUrl":null,"url":null,"abstract":"With the motivation to overcome the shortcomings of the Rosenblatt Inverse-First-Order Reliability environmental contour method, in this study, the use of bivariate kernel density estimation with smoothed cross-validation bandwidth selection method is proposed for generating more accurate environmental contour lines. The environmental contour lines at a chosen offshore site obtained by using the proposed new method were compared with those obtained by using the Rosenblatt Inverse-First-Order Reliability environmental contour method, and the accuracy and effectiveness of the proposed new method have been fully and clearly substantiated. Next, the 50-year extreme structural dynamic responses of a monopile-supported 5MW offshore wind turbine installed at this chosen offshore site based on the proposed new method and the Rosenblatt Inverse-First-Order Reliability environmental contour approach were calculated. Analyzing the calculating results, it can be found that the 50-year extreme fore-aft shear force value based on the 50-year extreme sea state obtained using the proposed new method is 78.9% larger than the corresponding value obtained based on the Rosenblatt Inverse-First-Order Reliability contour method. The calculation results in this paper were further systematically analyzed and compared, and the necessity and importance of using more realistic environmental contour lines (such as those generated using the proposed new method) have been finally highlighted.","PeriodicalId":54575,"journal":{"name":"Proceedings of the Institution of Civil Engineers-Maritime Engineering","volume":"99 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Civil Engineers-Maritime Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jmaen.2021.019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

With the motivation to overcome the shortcomings of the Rosenblatt Inverse-First-Order Reliability environmental contour method, in this study, the use of bivariate kernel density estimation with smoothed cross-validation bandwidth selection method is proposed for generating more accurate environmental contour lines. The environmental contour lines at a chosen offshore site obtained by using the proposed new method were compared with those obtained by using the Rosenblatt Inverse-First-Order Reliability environmental contour method, and the accuracy and effectiveness of the proposed new method have been fully and clearly substantiated. Next, the 50-year extreme structural dynamic responses of a monopile-supported 5MW offshore wind turbine installed at this chosen offshore site based on the proposed new method and the Rosenblatt Inverse-First-Order Reliability environmental contour approach were calculated. Analyzing the calculating results, it can be found that the 50-year extreme fore-aft shear force value based on the 50-year extreme sea state obtained using the proposed new method is 78.9% larger than the corresponding value obtained based on the Rosenblatt Inverse-First-Order Reliability contour method. The calculation results in this paper were further systematically analyzed and compared, and the necessity and importance of using more realistic environmental contour lines (such as those generated using the proposed new method) have been finally highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海上风力发电机组结构安全可靠性分析新方法
为了克服Rosenblatt逆一阶可靠性环境轮廓线方法的不足,本研究提出了利用二元核密度估计和平滑交叉验证带宽选择方法来生成更精确的环境轮廓线。将该方法与Rosenblatt逆一阶可靠性环境等高线法在选定海域的环境等高线进行了对比,充分证明了该方法的准确性和有效性。接下来,基于所提出的新方法和Rosenblatt逆一阶可靠性环境轮廓法,计算了安装在选定海上站点的单桩支撑5MW海上风力发电机的50年极端结构动力响应。分析计算结果发现,基于50年极端海况的50年极端前后剪切力值比基于Rosenblatt逆一阶可靠性轮廓线法得到的50年极端前后剪切力值大78.9%。对本文的计算结果进行了进一步系统的分析和比较,最后强调了使用更真实的环境等高线(例如使用新方法生成的等高线)的必要性和重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
14.80%
发文量
12
审稿时长
>12 weeks
期刊介绍: Maritime Engineering publishes technical papers relevant to civil engineering in port, estuarine, coastal and offshore environments. Relevant to consulting, client and contracting engineers as well as researchers and academics, the journal focuses on safe and sustainable engineering in the salt-water environment and comprises papers regarding management, planning, design, analysis, construction, operation, maintenance and applied research. The journal publishes papers and articles from industry and academia that conveys advanced research that those developing, designing or constructing schemes can begin to apply, as well as papers on good practices that others can learn from and utilise.
期刊最新文献
60MLD Floating Pump Station, Waikato River, New Zealand Performance of a novel concept of a monopile adapted with pre-tensioned tethers for intermediate waters Finite element analysis of a monopile under one-way and two-way lateral cyclic loading Preface: Offshore Structures and Subsea Technologies Risk assessment model of work safety in container dry ports: The adoption of the continuous risk matrix and Fuzzy AHP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1