{"title":"Bias due to isotopic incorporation in both relative and absolute protein quantitation with carbon-13 and nitrogen-15 labeled peptides","authors":"Brian A. Rappold, Andrew N. Hoofnagle","doi":"10.1016/j.clinms.2017.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>Mass spectrometry provides considerable benefits over other analytical techniques due to advantages imparted by the use of isotopically labeled internal standards. In some analytical approaches, the internal standard provides reference points for quantitative data reduction. However, there is an important phenomenon that occurs in the development of an internal standard, namely the distribution of naturally occurring isotopes is altered by artificial labeling. As a result, the number of molecules measured in each isotopic state (e.g., +0, +1, +2) varies between the manufactured internal standard and the naturally occurring unmodified analyte. This can create inaccuracies that are a function of the abundance, type and location of the isotopic labeling when internal standards act as the calibration material. In this study, theoretical examples calculated with naturally occurring isotopic incorporation, manufactured isotopic enrichment, and experimental data from comparative analysis of naturally and artificially labeled peptides were explored to demonstrate the variation in measurement between analytes and their stable, isotopically labeled internal standards.</p></div>","PeriodicalId":48565,"journal":{"name":"Clinical Mass Spectrometry","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.clinms.2017.04.002","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Mass Spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2376999816300216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 4
Abstract
Mass spectrometry provides considerable benefits over other analytical techniques due to advantages imparted by the use of isotopically labeled internal standards. In some analytical approaches, the internal standard provides reference points for quantitative data reduction. However, there is an important phenomenon that occurs in the development of an internal standard, namely the distribution of naturally occurring isotopes is altered by artificial labeling. As a result, the number of molecules measured in each isotopic state (e.g., +0, +1, +2) varies between the manufactured internal standard and the naturally occurring unmodified analyte. This can create inaccuracies that are a function of the abundance, type and location of the isotopic labeling when internal standards act as the calibration material. In this study, theoretical examples calculated with naturally occurring isotopic incorporation, manufactured isotopic enrichment, and experimental data from comparative analysis of naturally and artificially labeled peptides were explored to demonstrate the variation in measurement between analytes and their stable, isotopically labeled internal standards.
期刊介绍:
Clinical Mass Spectrometry publishes peer-reviewed articles addressing the application of mass spectrometric technologies in Laboratory Medicine and Clinical Pathology with the focus on diagnostic applications. It is the first journal dedicated specifically to the application of mass spectrometry and related techniques in the context of diagnostic procedures in medicine. The journal has an interdisciplinary approach aiming to link clinical, biochemical and technological issues and results.