Reliable Detection of Doppelgängers based on Deep Face Representations

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Biometrics Pub Date : 2022-01-21 DOI:10.1049/bme2.12072
C. Rathgeb, Daniel Fischer, P. Drozdowski, C. Busch
{"title":"Reliable Detection of Doppelgängers based on Deep Face Representations","authors":"C. Rathgeb, Daniel Fischer, P. Drozdowski, C. Busch","doi":"10.1049/bme2.12072","DOIUrl":null,"url":null,"abstract":"—Doppelg¨angers (or lookalikes) usually yield an in- creased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non- mated comparison trials. In this work, we assess the impact of doppelg¨angers on the HDA Doppelg¨anger and Disguised Faces in The Wild databases using a state-of-the-art face recognition system. It is found that doppelg¨anger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, we propose a doppelg ¨ anger detection method which distinguishes doppelg¨angers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelg¨anger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelg¨anger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelg¨angers.","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"73 1","pages":"215-224"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/bme2.12072","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

—Doppelg¨angers (or lookalikes) usually yield an in- creased probability of false matches in a facial recognition system, as opposed to random face image pairs selected for non- mated comparison trials. In this work, we assess the impact of doppelg¨angers on the HDA Doppelg¨anger and Disguised Faces in The Wild databases using a state-of-the-art face recognition system. It is found that doppelg¨anger image pairs yield very high similarity scores resulting in a significant increase of false match rates. Further, we propose a doppelg ¨ anger detection method which distinguishes doppelg¨angers from mated comparison trials by analysing differences in deep representations obtained from face image pairs. The proposed detection system employs a machine learning-based classifier, which is trained with generated doppelg¨anger image pairs utilising face morphing techniques. Experimental evaluations conducted on the HDA Doppelg¨anger and Look-Alike Face databases reveal a detection equal error rate of approximately 2.7% for the task of separating mated authentication attempts from doppelg¨angers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度人脸表征的Doppelgängers可靠检测
在面部识别系统中,与非配对比较试验中选择的随机面部图像对相反,二重身(或长相相似者)通常会产生更高的错误匹配概率。在这项工作中,我们使用最先进的人脸识别系统评估了二重身对野外数据库中HDA二重身和伪装面部的影响。研究发现,二重身图像对产生非常高的相似性分数,导致错误匹配率显着增加。此外,我们提出了一种二重身检测方法,该方法通过分析从人脸图像对中获得的深度表征的差异来区分二重身和配对比较试验。所提出的检测系统采用基于机器学习的分类器,该分类器使用人脸变形技术生成的二重身图像对进行训练。在HDA二重脸和相似脸数据库上进行的实验评估显示,从二重脸中分离配对身份验证尝试的检测错误率约为2.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Biometrics
IET Biometrics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍: The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding. The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies: Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.) Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches Soft biometrics and information fusion for identification, verification and trait prediction Human factors and the human-computer interface issues for biometric systems, exception handling strategies Template construction and template management, ageing factors and their impact on biometric systems Usability and user-oriented design, psychological and physiological principles and system integration Sensors and sensor technologies for biometric processing Database technologies to support biometric systems Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection Biometric cryptosystems, security and biometrics-linked encryption Links with forensic processing and cross-disciplinary commonalities Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated Applications and application-led considerations Position papers on technology or on the industrial context of biometric system development Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions Relevant ethical and social issues
期刊最新文献
A Multimodal Biometric Recognition Method Based on Federated Learning Deep and Shallow Feature Fusion in Feature Score Level for Palmprint Recognition Research on TCN Model Based on SSARF Feature Selection in the Field of Human Behavior Recognition A Finger Vein Recognition Algorithm Based on the Histogram of Variable Curvature Directional Binary Statistics A Survey on Automatic Face Recognition Using Side-View Face Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1