Empirical Analysis of Vehicle Tracking Algorithms for Extracting Integral Trajectories from Consecutive Videos

IF 0.8 4区 工程技术 Q4 TRANSPORTATION SCIENCE & TECHNOLOGY Promet-Traffic & Transportation Pub Date : 2022-07-07 DOI:10.7307/ptt.v34i4.4041
Quan Chen, Hao Wang, Changyin Dong
{"title":"Empirical Analysis of Vehicle Tracking Algorithms for Extracting Integral Trajectories from Consecutive Videos","authors":"Quan Chen, Hao Wang, Changyin Dong","doi":"10.7307/ptt.v34i4.4041","DOIUrl":null,"url":null,"abstract":"This study introduces a novel methodological frame-work for extracting integral vehicle trajectories from several consecutive pictures automatically. The frame-work contains camera observation, eliminating image distortions, video stabilising, stitching images, identify-ing vehicles and tracking vehicles. Observation videos of four sections in South Fengtai Road, Nanjing, Jiangsu Province, China are taken as a case study to validate the framework. As key points, six typical tracking algorithms, including boosting, CSRT, KCF, median flow, MIL and MOSSE, are compared in terms of tracking reliability, operational time, random access memory (RAM) usage and data accuracy. Main impact factors taken into con-sideration involve vehicle colours, zebra lines, lane lines, lamps, guide boards and image stitching seams. Based on empirical analysis, it is found that MOSSE requires the least operational time and RAM usage, whereas CSRT presents the best tracking reliability. In addition, all tracking algorithms produce reliable vehicle trajecto-ry and speed data if vehicles are tracked steadily.","PeriodicalId":54546,"journal":{"name":"Promet-Traffic & Transportation","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Promet-Traffic & Transportation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.7307/ptt.v34i4.4041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel methodological frame-work for extracting integral vehicle trajectories from several consecutive pictures automatically. The frame-work contains camera observation, eliminating image distortions, video stabilising, stitching images, identify-ing vehicles and tracking vehicles. Observation videos of four sections in South Fengtai Road, Nanjing, Jiangsu Province, China are taken as a case study to validate the framework. As key points, six typical tracking algorithms, including boosting, CSRT, KCF, median flow, MIL and MOSSE, are compared in terms of tracking reliability, operational time, random access memory (RAM) usage and data accuracy. Main impact factors taken into con-sideration involve vehicle colours, zebra lines, lane lines, lamps, guide boards and image stitching seams. Based on empirical analysis, it is found that MOSSE requires the least operational time and RAM usage, whereas CSRT presents the best tracking reliability. In addition, all tracking algorithms produce reliable vehicle trajecto-ry and speed data if vehicles are tracked steadily.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从连续视频中提取积分轨迹的车辆跟踪算法实证分析
本文提出了一种从连续图像中自动提取车辆整体轨迹的方法框架。该框架包括摄像头观察,消除图像失真,视频稳定,拼接图像,识别车辆和跟踪车辆。以中国江苏省南京市丰台南路四个路段的观测视频为例,对该框架进行了验证。重点比较了boost、CSRT、KCF、中位数流、MIL和MOSSE等六种典型跟踪算法的跟踪可靠性、运行时间、随机存取存储器(RAM)使用率和数据准确性。考虑的主要影响因素包括车辆颜色、斑马线、车道线、灯、导板和图像拼接接缝。通过实证分析,发现MOSSE对操作时间和内存占用最少,而CSRT具有最佳的跟踪可靠性。此外,如果车辆被稳定跟踪,所有跟踪算法都会产生可靠的车辆轨迹和速度数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Promet-Traffic & Transportation
Promet-Traffic & Transportation 工程技术-运输科技
CiteScore
1.90
自引率
20.00%
发文量
62
审稿时长
3 months
期刊介绍: This scientific journal publishes scientific papers in the area of technical sciences, field of transport and traffic technology. The basic guidelines of the journal, which support the mission - promotion of transport science, are: relevancy of published papers and reviewer competency, established identity in the print and publishing profile, as well as other formal and informal details. The journal organisation consists of the Editorial Board, Editors, Reviewer Selection Committee and the Scientific Advisory Committee. The received papers are subject to peer review in accordance with the recommendations for international scientific journals. The papers published in the journal are placed in sections which explain their focus in more detail. The sections are: transportation economy, information and communication technology, intelligent transport systems, human-transport interaction, intermodal transport, education in traffic and transport, traffic planning, traffic and environment (ecology), traffic on motorways, traffic in the cities, transport and sustainable development, traffic and space, traffic infrastructure, traffic policy, transport engineering, transport law, safety and security in traffic, transport logistics, transport technology, transport telematics, internal transport, traffic management, science in traffic and transport, traffic engineering, transport in emergency situations, swarm intelligence in transportation engineering. The Journal also publishes information not subject to review, and classified under the following headings: book and other reviews, symposia, conferences and exhibitions, scientific cooperation, anniversaries, portraits, bibliographies, publisher information, news, etc.
期刊最新文献
Selecting the Flexible Last-Mile Delivery Models Using Multicriteria Decision-Making Passenger Queuing Analysis Method of Security Inspection and Ticket-Checking Area without Archway Metal Detector in Metro Stations Environmental Sustainability and Freight Transport Performance in the EU – An Autoregressive Conditional Heteroscedasticity (ARCH) Model Analysis Use of Structural Equation Modelling and Neural Network to Analyse Shared Parking Choice Behaviour Prediction of Electric Vehicle Energy Consumption in an Intelligent and Connected Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1