Effa: a proM plugin for recovering event logs

Xiaoxu Xia, Wei Song, Fangfei Chen, Xuansong Li, Pengcheng Zhang
{"title":"Effa: a proM plugin for recovering event logs","authors":"Xiaoxu Xia, Wei Song, Fangfei Chen, Xuansong Li, Pengcheng Zhang","doi":"10.1145/2993717.2993732","DOIUrl":null,"url":null,"abstract":"While event logs generated by business processes play an increasingly significant role in business analysis, the quality of data remains a serious problem. Automatic recovery of dirty event logs is desirable and thus receives more attention. However, existing methods only focus on missing event recovery, or fall short of efficiency. To this end, we present Effa, a ProM plugin, to automatically recover event logs in the light of process specifications. Based on advanced heuristics including process decomposition and trace replaying to search the minimum recovery, Effa achieves a balance between repairing accuracy and efficiency.","PeriodicalId":20631,"journal":{"name":"Proceedings of the 8th Asia-Pacific Symposium on Internetware","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th Asia-Pacific Symposium on Internetware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2993717.2993732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

While event logs generated by business processes play an increasingly significant role in business analysis, the quality of data remains a serious problem. Automatic recovery of dirty event logs is desirable and thus receives more attention. However, existing methods only focus on missing event recovery, or fall short of efficiency. To this end, we present Effa, a ProM plugin, to automatically recover event logs in the light of process specifications. Based on advanced heuristics including process decomposition and trace replaying to search the minimum recovery, Effa achieves a balance between repairing accuracy and efficiency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effa:用于恢复事件日志的proM插件
虽然业务流程生成的事件日志在业务分析中扮演着越来越重要的角色,但数据的质量仍然是一个严重的问题。脏事件日志的自动恢复是需要的,因此受到更多的关注。然而,现有的方法只关注丢失事件的恢复,或者效率不高。为此,我们提出了一个ProM插件Effa,它可以根据流程规范自动恢复事件日志。基于过程分解和轨迹重放等先进的启发式方法来搜索最小修复量,在修复精度和效率之间取得平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Internetware 2022: 13th Asia-Pacific Symposium on Internetware, Hohhot, China, June 11 - 12, 2022 Internetware'20: 12th Asia-Pacific Symposium on Internetware, Singapore, November 1-3, 2020 Internetware '19: The 11th Asia-Pacific Symposium on Internetware, Fukuoka, Japan, October 28-29, 2019 RepoLike: personal repositories recommendation in social coding communities Effa: a proM plugin for recovering event logs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1