Automatic extraction of multiword expression candidates for Indonesian language

D. Gunawan, A. Amalia, Indra Charisma
{"title":"Automatic extraction of multiword expression candidates for Indonesian language","authors":"D. Gunawan, A. Amalia, Indra Charisma","doi":"10.1109/ICCSCE.2016.7893589","DOIUrl":null,"url":null,"abstract":"The utilization of dictionary-based multiword expressions (MWEs) has limitation regarding the availability of the word combination, because there are many possible multiword expressions that can be extracted from a text. This research is a preliminary study to extract multiword expressions from a text for Indonesian language. The aim of this study is determining the best method to extract multiword expression candidates for Indonesian language. This research proposed a method to extract multiword expression candidates from texts in a corpus. The text is tokenized and then filtered with stop words to remove unnecessary words. The result of these steps is multiword expression candidates that are still mixed with common and uncommon multiword expressions. To filter uncommon multiword expressions, they are ranked with the other multiword expressions from the other texts within the same corpus by using TF-IDF algorithm. This research evaluates three options for extracting multiword expression candidates. The option which utilizes combination of special characters and stop words to determine word combination is promising because it excels in combining word rate, has more appropriate multiword expression candidates, while it spends almost the same amount of memory usage compared to the others.","PeriodicalId":6540,"journal":{"name":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"89 1","pages":"304-309"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE.2016.7893589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The utilization of dictionary-based multiword expressions (MWEs) has limitation regarding the availability of the word combination, because there are many possible multiword expressions that can be extracted from a text. This research is a preliminary study to extract multiword expressions from a text for Indonesian language. The aim of this study is determining the best method to extract multiword expression candidates for Indonesian language. This research proposed a method to extract multiword expression candidates from texts in a corpus. The text is tokenized and then filtered with stop words to remove unnecessary words. The result of these steps is multiword expression candidates that are still mixed with common and uncommon multiword expressions. To filter uncommon multiword expressions, they are ranked with the other multiword expressions from the other texts within the same corpus by using TF-IDF algorithm. This research evaluates three options for extracting multiword expression candidates. The option which utilizes combination of special characters and stop words to determine word combination is promising because it excels in combining word rate, has more appropriate multiword expression candidates, while it spends almost the same amount of memory usage compared to the others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
印尼语多词候选表达式的自动提取
基于字典的多词表达式(MWEs)的使用在单词组合的可用性方面受到限制,因为可以从文本中提取许多可能的多词表达式。本研究是对印尼语文本中多词表达提取的初步研究。本研究的目的是确定提取印尼语多词候选表达的最佳方法。本研究提出了一种从语料库文本中提取多词候选表达的方法。文本被标记化,然后用停止词过滤以删除不必要的词。这些步骤的结果是多词候选表达式仍然混合着常见和不常见的多词表达式。为了过滤不常见的多词表达式,使用TF-IDF算法将它们与同一语料库中其他文本中的其他多词表达式进行排序。本研究评估了提取多词候选表达式的三种选择。使用特殊字符和停止词的组合来确定单词组合的选项是有前途的,因为它在组合单词率方面表现出色,有更合适的多单词表达候选者,而与其他选项相比,它花费的内存使用量几乎相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RVP-FLMS: A robust variable power fractional LMS algorithm Verification of nine-phase PMSM model in d-q coordinates with mutual couplings Gamified outcomes-based teaching and learning assessment tool for Mapúa Institute of Technology Empirical testing of prototype real-time multi-hop MAC for Wireless Sensor Networks Improving intrusion detection system detection accuracy and reducing learning time by combining selected features selection and parameters optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1