Response Surface Methodology-Based Parameter Optimization of Candlenut Seeds Extraction (Aleurites moluccana Willd)

Y. Variyana, D. Ermaya, S. Shintawati, Děvy Cendekia, M. Mahfud
{"title":"Response Surface Methodology-Based Parameter Optimization of Candlenut Seeds Extraction (Aleurites moluccana Willd)","authors":"Y. Variyana, D. Ermaya, S. Shintawati, Děvy Cendekia, M. Mahfud","doi":"10.20961/equilibrium.v7i1.72842","DOIUrl":null,"url":null,"abstract":"ABSTRACT. Aleurites moluccana Willd, known candlenut plant, has the potential to be used for vegetable oil, pharmacological purposes, and biofuel. However, there is a lack of knowledge on the optimal extraction conditions for this extraction. The current study aimed to use response surface methodology (RSM) to optimize the Microwave Hydrodiffusion Gravity (MHG) conditions for extraction yield. A three-factor-three-level Box-Behnken design (BBD) was used to investigate the effects of three independent parameters: material size (A), microwave power (B), and extraction time (C). The experimental data for the candlenut seed extraction were analyzed to obtain quadratic polynomial equations. The effects of various parameters on the yield of extraction yield were then examined and analyzed using plots and contours.The results showing extraction yield significantly influenced all independent parameters were p < 0.0001.  Further, The study predicted the optimum conditions for extracting candlenut seeds, which included using material size in 1.378 cm, microwave power of 599.359 W, and extraction time 66.076 min, resulted yield of 5.015%. Based on experimental data conditions, the highest extraction yield was 5.5% of 1 cm, 600 W, and 60 min, respectively, which were in good agreement with the predicted model. The study concluded that the optimized MHG method could be useful in industrial extraction processes and the use of statistical method can optimize the extraction process and reduce the number of experiments required.Keywords: candlenut, RSM, MHG, yield","PeriodicalId":11866,"journal":{"name":"Equilibrium Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Equilibrium Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20961/equilibrium.v7i1.72842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT. Aleurites moluccana Willd, known candlenut plant, has the potential to be used for vegetable oil, pharmacological purposes, and biofuel. However, there is a lack of knowledge on the optimal extraction conditions for this extraction. The current study aimed to use response surface methodology (RSM) to optimize the Microwave Hydrodiffusion Gravity (MHG) conditions for extraction yield. A three-factor-three-level Box-Behnken design (BBD) was used to investigate the effects of three independent parameters: material size (A), microwave power (B), and extraction time (C). The experimental data for the candlenut seed extraction were analyzed to obtain quadratic polynomial equations. The effects of various parameters on the yield of extraction yield were then examined and analyzed using plots and contours.The results showing extraction yield significantly influenced all independent parameters were p < 0.0001.  Further, The study predicted the optimum conditions for extracting candlenut seeds, which included using material size in 1.378 cm, microwave power of 599.359 W, and extraction time 66.076 min, resulted yield of 5.015%. Based on experimental data conditions, the highest extraction yield was 5.5% of 1 cm, 600 W, and 60 min, respectively, which were in good agreement with the predicted model. The study concluded that the optimized MHG method could be useful in industrial extraction processes and the use of statistical method can optimize the extraction process and reduce the number of experiments required.Keywords: candlenut, RSM, MHG, yield
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于响应面法的核桃种子提取工艺参数优化
摘要木糖木糖植物是一种已知的木糖植物,具有用于植物油、药理和生物燃料的潜力。然而,对于这种提取的最佳提取条件缺乏知识。本研究旨在利用响应面法(RSM)优化微波水扩散重力法(MHG)提取率的条件。采用三因素三水平Box-Behnken设计(BBD)研究了材料尺寸(A)、微波功率(B)和提取时间(C)三个独立参数对提取效果的影响,并对实验数据进行了二次多项式分析。然后用图和等高线考察和分析了各参数对提取率的影响。结果表明,提取率对各独立参数的影响均显著(p < 0.0001)。结果表明,最佳提取条件为原料粒径为1.378 cm,微波功率为599.359 W,提取时间为66.076 min,得率为5.015%。在实验数据条件下,提取率最高为5.5%,分别为1 cm、600 W和60 min,与预测模型吻合较好。研究结果表明,优化后的MHG方法可用于工业提取工艺,采用统计学方法可优化提取工艺,减少实验次数。关键词:核桃,RSM, MHG,收率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effectiveness of Activated Carbon from Jackfruit Skin for The Heavy Metal Lead (Pb) Adsorption Using The Langmuir and Freundlich Equations Utilization of Tofu Liquid Waste as Liquid Organic Fertilizer Using the Fermentation Method with Activator Effective Microorganisms 4 (EM-4): A Review Producing Gel With Various Ingredients: a Review Glucose Syrup from Purple Sweet Potatoes (Ipomoea batatas L. Poir) using Acid Hydrolysis Method Simulation of Gas Sweetening Process using Extended NRTL and Stages Efficiency as Modeling Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1