{"title":"Gloria","authors":"Rachid Kachemir, Brad Kellett, Krishna Behara","doi":"10.1145/2996913.2997013","DOIUrl":null,"url":null,"abstract":"Indexing and delivering spatial data to a massive user base composed of over a billion devices around the world stretches the limits of traditional infrastructure and operational tools. For instance, offline bulk indexing and loading fall short of viable solutions when it comes to data at scale; Integration with distributed systems such as Apache Hadoop© or Spark© is sparse, while data loading is often performed in a sub-optimal fashion by relying on intermediate file formats. We present in this paper an approach toward a hybrid on- line/offline indexing framework called Gloria that has been running in production settings for the past year at over 350k requests per seconds with lookup latencies under 5μs. The resulting output is an in-memory key-value store and we show that by leveraging higher level MapReduce [7] constructs as defined in FlumeJava [5], Gloria can achieve large scale key-value offline indexing in a fraction of the time required by traditional datastores while maintaining similar operational performance. Gloria also provides a spatial layer based on improvements to pointer-less quadtrees [12] and locational identifiers we call shift key that reduces the nearest neighbor problem in spatial data to simple key-value lookups. Shift keys have shown to outperform well established solutions such as Google S2 with locational key operations.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2997013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Indexing and delivering spatial data to a massive user base composed of over a billion devices around the world stretches the limits of traditional infrastructure and operational tools. For instance, offline bulk indexing and loading fall short of viable solutions when it comes to data at scale; Integration with distributed systems such as Apache Hadoop© or Spark© is sparse, while data loading is often performed in a sub-optimal fashion by relying on intermediate file formats. We present in this paper an approach toward a hybrid on- line/offline indexing framework called Gloria that has been running in production settings for the past year at over 350k requests per seconds with lookup latencies under 5μs. The resulting output is an in-memory key-value store and we show that by leveraging higher level MapReduce [7] constructs as defined in FlumeJava [5], Gloria can achieve large scale key-value offline indexing in a fraction of the time required by traditional datastores while maintaining similar operational performance. Gloria also provides a spatial layer based on improvements to pointer-less quadtrees [12] and locational identifiers we call shift key that reduces the nearest neighbor problem in spatial data to simple key-value lookups. Shift keys have shown to outperform well established solutions such as Google S2 with locational key operations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Location corroborations by mobile devices without traces Knowledge-based trajectory completion from sparse GPS samples Particle filter for real-time human mobility prediction following unprecedented disaster Pyspatiotemporalgeom: a python library for spatiotemporal types and operations Fast transportation network traversal with hyperedges: (industrial paper)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1