Effect of Cyclic Corrosion and Joining Method on the Strength of Multimaterial Double Lap Joints

Marco Gerini Romagnoli, Chao Yang, S. Nassar
{"title":"Effect of Cyclic Corrosion and Joining Method on the Strength of Multimaterial Double Lap Joints","authors":"Marco Gerini Romagnoli, Chao Yang, S. Nassar","doi":"10.1115/imece2021-71154","DOIUrl":null,"url":null,"abstract":"\n The effect of cyclic corrosion on the static performance of multi-material double lap joints is investigated. Carbon-Fiber-Reinforced thermoplastic composite substrates are joined to Aluminum substrates using bonding-only, bolting-only, or by hybrid bonding-and-bolting methods. Polyurethane-based or epoxy-based structural adhesives are used. Surface roughness is maintained constant and evaluated with an optical profilometer. The quasi-static performance of baseline joints is assessed, and the results from the various joining methods are compared. Cyclic corrosion testing of Double Lap joints is performed in accordance with a GMW14872 3-stage laboratory standards for 30 one-full-day cycles. Quasi-static lap shear tests of test samples are performed at various stages of corrosion cycling, and progressive strength degradation is observed for bonded-only and hybrid bonded-and-bolted joints. Bolted-only joints do not show significant performance loss. Results, discussion, and conclusions are provided.","PeriodicalId":23837,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-71154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The effect of cyclic corrosion on the static performance of multi-material double lap joints is investigated. Carbon-Fiber-Reinforced thermoplastic composite substrates are joined to Aluminum substrates using bonding-only, bolting-only, or by hybrid bonding-and-bolting methods. Polyurethane-based or epoxy-based structural adhesives are used. Surface roughness is maintained constant and evaluated with an optical profilometer. The quasi-static performance of baseline joints is assessed, and the results from the various joining methods are compared. Cyclic corrosion testing of Double Lap joints is performed in accordance with a GMW14872 3-stage laboratory standards for 30 one-full-day cycles. Quasi-static lap shear tests of test samples are performed at various stages of corrosion cycling, and progressive strength degradation is observed for bonded-only and hybrid bonded-and-bolted joints. Bolted-only joints do not show significant performance loss. Results, discussion, and conclusions are provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
循环腐蚀及连接方式对复合材料双搭接接头强度的影响
研究了循环腐蚀对多材料双搭接接头静力性能的影响。碳纤维增强热塑性复合材料基板与铝基板的连接方式为仅粘合、仅螺栓连接或混合粘合和螺栓连接。使用聚氨酯基或环氧基结构粘合剂。表面粗糙度保持恒定,并用光学轮廓仪进行评估。对基线节点的准静态性能进行了评估,并对不同连接方法的结果进行了比较。双搭接循环腐蚀试验按照GMW14872 3阶段实验室标准进行30个全天循环。在腐蚀循环的不同阶段对试件进行了准静态搭接剪切试验,发现纯粘结和混合粘结螺栓连接的强度逐渐退化。仅螺栓连接不会表现出明显的性能损失。提供了结果、讨论和结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Evaluation of Tribological Performance of Laser Micro-Texturing Ti6Al4V Under Lubrication With Protic Ionic Liquid Strength and Quality of Recycled Acrylonitrile Butadiene Styrene (ABS) Crystalline Phase Changes Due to High-Speed Projectiles Impact on HY100 Steel Mechanical Properties of Snap-Fits Fabricated by Selective Laser Sintering From Polyamide Chemical Structure Analysis of Carbon-Doped Silicon Oxide Thin Films by Plasma-Enhanced Chemical Vapor Deposition of Tetrakis(Trimethylsilyloxy)Silane Precursor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1