Physiological and genetic analysis of cellular sodium and lithium response/resistance behavior using the yeast Saccharomyces cerevisiae as a model organism

Ş. H. Tekarslan, Ceren Alkim, C. Hunte, Z. P. Çakar
{"title":"Physiological and genetic analysis of cellular sodium and lithium response/resistance behavior using the yeast Saccharomyces cerevisiae as a model organism","authors":"Ş. H. Tekarslan, Ceren Alkim, C. Hunte, Z. P. Çakar","doi":"10.16883/JFPIU.54980","DOIUrl":null,"url":null,"abstract":"Abstract: The yeast Saccharomyces cerevisiae is a simple eukaryote and an excellent model organism for molecular biology. In this study, a NaCl-resistant S. cerevisiae mutant obtained by inverse metabolic engineering was used as a model to investigate responses and resistance behavior to NaCl, LiCl, KCl, TMA, spermine and sorbitol stresses., at physiological and genetic levels. The physiological spot test results revealed that the NaCl-resistant yeast mutant showed higher resistance to LiCl and NaCl. Gene expression analysis by qRT-PCR revealed that ENA6 and NHA1 genes of the mutant were induced in the absence and presence of LiCl and NaCl. The dysfunction of Na+/H+ antiporters are related to several diseases such as hypertension, epilepsy, postischemic myocardial arrhythmia, gastric and kidney disease, diarrhea, and glaucoma. Thus, the NaCl-resistant yeast mutant could be used to understand cellular sodium and lithium resistance mechanisms and the function of Na+/H+ antiporters also in higher eukaryotic organisms, including humans. Key words: Saccharomyces cerevisiae, stress resistance, salt-resistance , lithium resistance, NHA1","PeriodicalId":15850,"journal":{"name":"Journal of Faculty Pharmacy of Istanbul University","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Faculty Pharmacy of Istanbul University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16883/JFPIU.54980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract: The yeast Saccharomyces cerevisiae is a simple eukaryote and an excellent model organism for molecular biology. In this study, a NaCl-resistant S. cerevisiae mutant obtained by inverse metabolic engineering was used as a model to investigate responses and resistance behavior to NaCl, LiCl, KCl, TMA, spermine and sorbitol stresses., at physiological and genetic levels. The physiological spot test results revealed that the NaCl-resistant yeast mutant showed higher resistance to LiCl and NaCl. Gene expression analysis by qRT-PCR revealed that ENA6 and NHA1 genes of the mutant were induced in the absence and presence of LiCl and NaCl. The dysfunction of Na+/H+ antiporters are related to several diseases such as hypertension, epilepsy, postischemic myocardial arrhythmia, gastric and kidney disease, diarrhea, and glaucoma. Thus, the NaCl-resistant yeast mutant could be used to understand cellular sodium and lithium resistance mechanisms and the function of Na+/H+ antiporters also in higher eukaryotic organisms, including humans. Key words: Saccharomyces cerevisiae, stress resistance, salt-resistance , lithium resistance, NHA1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以酿酒酵母为模式生物的细胞钠锂响应/抗性生理和遗传分析
摘要:酵母(Saccharomyces cerevisiae)是一种简单的真核生物,是分子生物学的优良模式生物。本研究以反代谢工程获得的耐NaCl酿酒酵母突变体为模型,研究了其对NaCl、LiCl、KCl、TMA、精胺和山梨醇胁迫的响应和抗性行为。在生理和基因水平上。生理斑点试验结果表明,酵母耐NaCl突变体对LiCl和NaCl具有较高的抗性。qRT-PCR基因表达分析显示,突变体的ENA6和NHA1基因在LiCl和NaCl存在和不存在的情况下均被诱导。Na+/H+反转运蛋白功能障碍与高血压、癫痫、缺血性心肌心律失常、胃和肾脏疾病、腹泻、青光眼等疾病有关。因此,耐盐酵母突变体可用于了解包括人类在内的高等真核生物的细胞耐钠和耐锂机制以及Na+/H+反转运蛋白的功能。关键词:酿酒酵母,抗逆性,耐盐性,耐锂性,NHA1
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Check-list of additional taxa to the supplement flora of Turkey VII The effects of endocrine disrupting chemicals and genetic susceptibility on male infertility Physiological and genetic analysis of cellular sodium and lithium response/resistance behavior using the yeast Saccharomyces cerevisiae as a model organism Twenty years of research on Aloe vera Quality by design (QbD) for pharmaceutical area
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1