PA1 cells containing a truncated DNA polymerase β protein are more sensitive to gamma radiation.

IF 1.8 Q3 ONCOLOGY Radiation Oncology Journal Pub Date : 2022-03-01 Epub Date: 2022-03-29 DOI:10.3857/roj.2021.00689
Anutosh Patra, Anish Nag, Anindita Chakraborty, Nandan Bhattacharyya
{"title":"PA1 cells containing a truncated DNA polymerase β protein are more sensitive to gamma radiation.","authors":"Anutosh Patra, Anish Nag, Anindita Chakraborty, Nandan Bhattacharyya","doi":"10.3857/roj.2021.00689","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>DNA polymerase β (Polβ) acts in the base excision repair (BER) pathway. Mutations in DNA polymerase β (Polβ) are associated with different cancers. A variant of Polβ with a 97 amino acid deletion (PolβΔ), in heterozygous conditions with wild-type Polβ, was identified in sporadic ovarian tumor samples. This study aims to evaluate the gamma radiation sensitivity of PolβΔ for possible target therapy in ovarian cancer treatment.</p><p><strong>Materials and methods: </strong>PolβΔ cDNA was cloned in a GFP vector and transfected in PA1 cells. Stable cells (PA1PolβΔ) were treated with 60Co sourced gamma-ray (0-15 Gy) to investigate their radiation sensitivity. The affinity of PolβΔ with DNA evaluated by DNA protein in silico docking experiments.</p><p><strong>Results: </strong>The result showed a statistically significant (p < 0.05) higher sensitivity towards radiation at different doses (0-15 Gy) and time-point (48-72 hours) for PA1PolβΔ cells in comparison with normal PA1 cells. Ten Gy of gamma radiation was found to be the optimal dose. Significantly more PA1PolβΔ cells were killed at this dose than PA1 cells after 48 hours of treatment via an apoptotic pathway. The in silico docking experiments revealed that PolβΔ has more substantial binding potential towards the dsDNA than wild-type Polβ, suggesting a possible failure of BER pathway that results in cell death.</p><p><strong>Conclusion: </strong>Our study showed that the PA1PolβΔ cells were more susceptible than PA1 cells to gamma radiation. In the future, the potentiality of ionizing radiation to treat this type of cancer will be checked in animal models.</p>","PeriodicalId":46572,"journal":{"name":"Radiation Oncology Journal","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8984132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Oncology Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3857/roj.2021.00689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: DNA polymerase β (Polβ) acts in the base excision repair (BER) pathway. Mutations in DNA polymerase β (Polβ) are associated with different cancers. A variant of Polβ with a 97 amino acid deletion (PolβΔ), in heterozygous conditions with wild-type Polβ, was identified in sporadic ovarian tumor samples. This study aims to evaluate the gamma radiation sensitivity of PolβΔ for possible target therapy in ovarian cancer treatment.

Materials and methods: PolβΔ cDNA was cloned in a GFP vector and transfected in PA1 cells. Stable cells (PA1PolβΔ) were treated with 60Co sourced gamma-ray (0-15 Gy) to investigate their radiation sensitivity. The affinity of PolβΔ with DNA evaluated by DNA protein in silico docking experiments.

Results: The result showed a statistically significant (p < 0.05) higher sensitivity towards radiation at different doses (0-15 Gy) and time-point (48-72 hours) for PA1PolβΔ cells in comparison with normal PA1 cells. Ten Gy of gamma radiation was found to be the optimal dose. Significantly more PA1PolβΔ cells were killed at this dose than PA1 cells after 48 hours of treatment via an apoptotic pathway. The in silico docking experiments revealed that PolβΔ has more substantial binding potential towards the dsDNA than wild-type Polβ, suggesting a possible failure of BER pathway that results in cell death.

Conclusion: Our study showed that the PA1PolβΔ cells were more susceptible than PA1 cells to gamma radiation. In the future, the potentiality of ionizing radiation to treat this type of cancer will be checked in animal models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有截短 DNA 聚合酶 β 蛋白的 PA1 细胞对伽马辐射更敏感。
目的:DNA 聚合酶 β(Polβ)在碱基切除修复(BER)途径中发挥作用。DNA 聚合酶 β(Polβ)的突变与不同癌症有关。在散发性卵巢肿瘤样本中发现了一种缺失 97 个氨基酸的 Polβ 变异体(PolβΔ),它与野生型 Polβ 存在杂合条件。本研究旨在评估PolβΔ对伽马射线的敏感性,为卵巢癌治疗提供可能的靶向治疗:将 PolβΔ cDNA 克隆到 GFP 载体中并转染 PA1 细胞。稳定细胞(PA1PolβΔ)经 60Co 源伽马射线(0-15 Gy)处理,以研究其辐射敏感性。通过DNA蛋白质的硅对接实验评估了PolβΔ与DNA的亲和性:结果表明,与正常 PA1 细胞相比,PA1PolβΔ 细胞在不同剂量(0-15 Gy)和不同时间点(48-72 小时)对辐射的敏感性均有统计学意义(p < 0.05)。结果发现,10 Gy 的伽马辐射是最佳剂量。经过 48 小时的处理后,通过凋亡途径被杀死的 PA1PolβΔ 细胞明显多于 PA1 细胞。硅学对接实验显示,PolβΔ比野生型Polβ对dsDNA具有更强的结合潜力,这表明BER途径可能失效,从而导致细胞死亡:我们的研究表明,PA1PolβΔ细胞比PA1细胞更容易受到伽马辐射的影响。今后,将在动物模型中检验电离辐射治疗这类癌症的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
4.30%
发文量
24
期刊最新文献
Implementing high-dose rate surface mould brachytherapy for carcinoma of eyelid: a practical approach and weekly review The effects of high-dose radiation therapy on bone: a scoping review Validation of Combs prognostic scoring system in Indian recurrent glioma patients treated with re-radiation Long-term toxicities after allogeneic hematopoietic stem cell transplantation with or without total body irradiation: a population-based study in Korea Proton beam therapy as a promising option for high-risk limited stage small cell lung cancer: revealing potential of future novel agents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1