Pipeline to identify dominant features in spatial data

Roman Flury , Reinhard Furrer
{"title":"Pipeline to identify dominant features in spatial data","authors":"Roman Flury ,&nbsp;Reinhard Furrer","doi":"10.1016/j.jcmds.2022.100063","DOIUrl":null,"url":null,"abstract":"<div><p>Dominant-feature identification decomposes spatial data into several additive components to make different features apparent on each component. It recognizes their dominant features credibly and assesses feature attributes. This paper describes the pipeline to apply this method to regular and irregular lattice data as well as geostatistical data. These implementations are all openly available and templates for each case are provided in an associated git repository. As geostatistical data is typically large, we propose several efficient approximations suitable for such data. Emphasizing the use of these approximations in the context of dominant-feature identification, we apply them to data from a climate model describing the monthly mean diurnal range for the period between the years 2081 and 2100.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100063"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000232/pdfft?md5=0e0bc9b76dd06eb66d1da02b06ee7421&pid=1-s2.0-S2772415822000232-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dominant-feature identification decomposes spatial data into several additive components to make different features apparent on each component. It recognizes their dominant features credibly and assesses feature attributes. This paper describes the pipeline to apply this method to regular and irregular lattice data as well as geostatistical data. These implementations are all openly available and templates for each case are provided in an associated git repository. As geostatistical data is typically large, we propose several efficient approximations suitable for such data. Emphasizing the use of these approximations in the context of dominant-feature identification, we apply them to data from a climate model describing the monthly mean diurnal range for the period between the years 2081 and 2100.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
管道识别空间数据中的主导特征
显性特征识别将空间数据分解为多个可加性成分,使每个成分上的不同特征显现出来。它可靠地识别它们的主导特征,并评估特征属性。本文介绍了将该方法应用于规则和不规则格点数据以及地统计数据的流程。这些实现都是公开可用的,每个案例的模板都在相关的git存储库中提供。由于地质统计数据通常很大,我们提出了几种适用于此类数据的有效近似。为了强调在优势特征识别的背景下使用这些近似,我们将它们应用于描述2081年至2100年期间月平均日差的气候模式的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1