{"title":"A comprehensive study on asymmetrical source configuration in conventional and novel multilevel inverter topologies for PV system","authors":"R. Raj, S. K. Dash, R. K. Dhatrak, R. Nema","doi":"10.1109/TAPENERGY.2015.7229629","DOIUrl":null,"url":null,"abstract":"Environmentalist fraternity puts in myriad of great effort to mitigate environmental hazard caused by energy craving industries. Solar energy is the best clean alternative energy resource. During shading condition arrays can be treated as an asymmetrical DC source for multilevel inverter, based on insolation level, sets of PV panels are formed to act as DC source. During shading condition, based on insolation level sets of PV panels are allocated to multilevel inverter to as asymmetric source. With the growing research in multilevel inverter there are many topologies have been conceptualized which are having advantage over the conventional inverters. By allocating as asymmetric source the MPPT complexity can be reduced, also with lesser source higher number of levels can be synthesized. The focus of study presented here is toward the exhaustive analysis of conventional and novel cross connected source MLI topologies with reduced count for asymmetric source configuration for PV application, as all cross connected source MLI cannot be implemented for asymmetric source configuration. For the purpose of comparative analysis universal modulation scheme is implemented which enables the switches to operate at fundamental frequency and the results are simulated on MATLAB/Simulink platform.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"57 1","pages":"266-271"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Environmentalist fraternity puts in myriad of great effort to mitigate environmental hazard caused by energy craving industries. Solar energy is the best clean alternative energy resource. During shading condition arrays can be treated as an asymmetrical DC source for multilevel inverter, based on insolation level, sets of PV panels are formed to act as DC source. During shading condition, based on insolation level sets of PV panels are allocated to multilevel inverter to as asymmetric source. With the growing research in multilevel inverter there are many topologies have been conceptualized which are having advantage over the conventional inverters. By allocating as asymmetric source the MPPT complexity can be reduced, also with lesser source higher number of levels can be synthesized. The focus of study presented here is toward the exhaustive analysis of conventional and novel cross connected source MLI topologies with reduced count for asymmetric source configuration for PV application, as all cross connected source MLI cannot be implemented for asymmetric source configuration. For the purpose of comparative analysis universal modulation scheme is implemented which enables the switches to operate at fundamental frequency and the results are simulated on MATLAB/Simulink platform.