Minimum Probability of Error Image Retrieval: From Visual Features to Image Semantics

N. Vasconcelos, Manuela Vasconcelos
{"title":"Minimum Probability of Error Image Retrieval: From Visual Features to Image Semantics","authors":"N. Vasconcelos, Manuela Vasconcelos","doi":"10.1561/2000000015","DOIUrl":null,"url":null,"abstract":"The recent availability of massive amounts of imagery, both at home and on the Internet, has generated substantial interest in systems for automated image search and retrieval. In this work, we review a principle for the design of such systems, which formulates the retrieval problem as one of decision-theory. Under this principle, a retrieval system searches the images that are likely to satisfy the query with minimum probability of error (MPE). It is shown how the MPE principle can be used to design optimal solutions for practical retrieval problems. This involves a characterization of the fundamental performance bounds of the MPE retrieval architecture, and the use of these bounds to derive optimal components for retrieval systems. These components include a feature space where images are represented, density estimation methods to produce this representation, and the similarity function to be used for image matching. It is also Full text available at: http://dx.doi.org/10.1561/2000000015","PeriodicalId":12340,"journal":{"name":"Found. Trends Signal Process.","volume":"34 1","pages":"265-389"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2000000015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The recent availability of massive amounts of imagery, both at home and on the Internet, has generated substantial interest in systems for automated image search and retrieval. In this work, we review a principle for the design of such systems, which formulates the retrieval problem as one of decision-theory. Under this principle, a retrieval system searches the images that are likely to satisfy the query with minimum probability of error (MPE). It is shown how the MPE principle can be used to design optimal solutions for practical retrieval problems. This involves a characterization of the fundamental performance bounds of the MPE retrieval architecture, and the use of these bounds to derive optimal components for retrieval systems. These components include a feature space where images are represented, density estimation methods to produce this representation, and the similarity function to be used for image matching. It is also Full text available at: http://dx.doi.org/10.1561/2000000015
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小错误概率图像检索:从视觉特征到图像语义
最近大量图像的可用性,无论是在家里还是在因特网上,都引起了人们对自动图像搜索和检索系统的极大兴趣。在这项工作中,我们回顾了这类系统的设计原则,该原则将检索问题表述为决策理论的一个问题。在此原则下,检索系统以最小错误概率(MPE)搜索可能满足查询的图像。展示了如何利用MPE原理设计实际检索问题的最优解。这涉及到MPE检索体系结构的基本性能界限的特征,以及使用这些界限来推导检索系统的最佳组件。这些组件包括表示图像的特征空间,生成这种表示的密度估计方法,以及用于图像匹配的相似性函数。它的全文也可在:http://dx.doi.org/10.1561/2000000015
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalizing Graph Signal Processing: High Dimensional Spaces, Models and Structures An Introduction to Quantum Machine Learning for Engineers Signal Decomposition Using Masked Proximal Operators Online Component Analysis, Architectures and Applications Wireless for Machine Learning: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1