Computational 3D and reflectivity imaging with high photon efficiency

Dongeek Shin, Ahmed Kirmani, Vivek K Goyal, J. Shapiro
{"title":"Computational 3D and reflectivity imaging with high photon efficiency","authors":"Dongeek Shin, Ahmed Kirmani, Vivek K Goyal, J. Shapiro","doi":"10.1109/ICIP.2014.7025008","DOIUrl":null,"url":null,"abstract":"Capturing depth and reflectivity images at low light levels from active illumination of a scene has wide-ranging applications. Conventionally, even with single-photon detectors, hundreds of photon detections are needed at each pixel to mitigate Poisson noise. We introduce a robust method for estimating depth and reflectivity using on the order of 1 detected photon per pixel averaged over the scene. Our computational imager combines physically accurate single-photon counting statistics with exploitation of the spatial correlations present in real-world reflectivity and 3D structure. Experiments conducted in the presence of strong background light demonstrate that our computational imager is able to accurately recover scene depth and reflectivity, while traditional maximum likelihood-based imaging methods lead to estimates that are highly noisy. Our framework increases photon efficiency 100-fold over traditional processing and thus will be useful for rapid, low-power, and noise-tolerant active optical imaging.","PeriodicalId":6856,"journal":{"name":"2014 IEEE International Conference on Image Processing (ICIP)","volume":"315 1","pages":"46-50"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2014.7025008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

Capturing depth and reflectivity images at low light levels from active illumination of a scene has wide-ranging applications. Conventionally, even with single-photon detectors, hundreds of photon detections are needed at each pixel to mitigate Poisson noise. We introduce a robust method for estimating depth and reflectivity using on the order of 1 detected photon per pixel averaged over the scene. Our computational imager combines physically accurate single-photon counting statistics with exploitation of the spatial correlations present in real-world reflectivity and 3D structure. Experiments conducted in the presence of strong background light demonstrate that our computational imager is able to accurately recover scene depth and reflectivity, while traditional maximum likelihood-based imaging methods lead to estimates that are highly noisy. Our framework increases photon efficiency 100-fold over traditional processing and thus will be useful for rapid, low-power, and noise-tolerant active optical imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光子效率的计算三维和反射率成像
从场景的主动照明中捕获低光照水平下的深度和反射率图像具有广泛的应用。传统上,即使使用单光子探测器,也需要在每个像素处进行数百个光子探测以减轻泊松噪声。我们介绍了一种鲁棒的方法来估计深度和反射率,使用在场景上平均每像素1个检测光子的顺序。我们的计算成像仪结合了物理上精确的单光子计数统计数据,利用了现实世界反射率和3D结构中的空间相关性。在强背景光下进行的实验表明,我们的计算成像仪能够准确地恢复场景深度和反射率,而传统的基于最大似然的成像方法会导致高度噪声的估计。我们的框架将光子效率提高到传统处理的100倍,因此将有助于快速,低功耗和耐噪声的主动光学成像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Joint source and channel coding of view and rate scalable multi-view video Inter-view consistent hole filling in view extrapolation for multi-view image generation Cost-aware depth map estimation for Lytro camera SVM with feature selection and smooth prediction in images: Application to CAD of prostate cancer Model based clustering for 3D directional features: Application to depth image analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1