{"title":"Engineered Wellbore Strengthening Application Enables Successful Drilling of Challenging Wells","authors":"Godwin Chimara, A. Calder, W. Amer, Philip Leslie","doi":"10.2118/191219-MS","DOIUrl":null,"url":null,"abstract":"\n Four wells were successfully drilled and completed, but high drilling fluid densities (1.95 to 1.98 SG) were necessary to maintain wellbore stability in the overburden section immediately above the depleted reservoir. The estimated hydrostatic overbalance from the drilling fluid was approximately 800 bar (11,603 psi) higher than reservoir pressure. A wellbore strengthening technique was selected to seal the calculated 1500 μm fractures induced by these high pressures. This paper highlights the engineering, logistical, and operational challenges encountered while successfully drilling and completing such wells.\n Geomechanical data was initially acquired, including Young's modulus, Poisson's ratio, and minimum in-situ horizontal stress; and, together with the operational parameters [hole diameter and equivalent circulating density (ECD)], these data were used to estimate fracture width (1500 μm). Subsequently, a drilling fluid system was engineered and customized to seal such fractures, thereby strengthening the wellbore to help minimize losses in the reservoir. The solution was validated at two separate laboratories. Large particulate materials with a D50 of 600 to 2300 μm were used. Improvement opportunities during execution were captured for the next cycle.\n A total drilling fluid loss of 512 m3 during a 16-hour period was experienced in one well after a drilling liner packoff occurred, and fractures greater than 1500 μm were initiated; however, the liner was successfully cemented in place. The coarse particulate materials (600 to 2300 μm) were mobilized in 500 and 1000 kg bags to minimize deck space requirements on the rig and help facilitate ease of mixing. Rig mixing and pit agitation capacity were important for effective mixing of the fluid system. The application also provided the opportunity to align testing procedures and equipment between the field and laboratory. With increasing reservoir depletion, the potential exists for fracture width increases that can impact the particle size of materials necessary to effectively design a solution. Engineered particulate solutions provided a pathway for sourcing and procuring the necessary wellbore strengthening materials.","PeriodicalId":11006,"journal":{"name":"Day 3 Wed, June 27, 2018","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, June 27, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191219-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Four wells were successfully drilled and completed, but high drilling fluid densities (1.95 to 1.98 SG) were necessary to maintain wellbore stability in the overburden section immediately above the depleted reservoir. The estimated hydrostatic overbalance from the drilling fluid was approximately 800 bar (11,603 psi) higher than reservoir pressure. A wellbore strengthening technique was selected to seal the calculated 1500 μm fractures induced by these high pressures. This paper highlights the engineering, logistical, and operational challenges encountered while successfully drilling and completing such wells.
Geomechanical data was initially acquired, including Young's modulus, Poisson's ratio, and minimum in-situ horizontal stress; and, together with the operational parameters [hole diameter and equivalent circulating density (ECD)], these data were used to estimate fracture width (1500 μm). Subsequently, a drilling fluid system was engineered and customized to seal such fractures, thereby strengthening the wellbore to help minimize losses in the reservoir. The solution was validated at two separate laboratories. Large particulate materials with a D50 of 600 to 2300 μm were used. Improvement opportunities during execution were captured for the next cycle.
A total drilling fluid loss of 512 m3 during a 16-hour period was experienced in one well after a drilling liner packoff occurred, and fractures greater than 1500 μm were initiated; however, the liner was successfully cemented in place. The coarse particulate materials (600 to 2300 μm) were mobilized in 500 and 1000 kg bags to minimize deck space requirements on the rig and help facilitate ease of mixing. Rig mixing and pit agitation capacity were important for effective mixing of the fluid system. The application also provided the opportunity to align testing procedures and equipment between the field and laboratory. With increasing reservoir depletion, the potential exists for fracture width increases that can impact the particle size of materials necessary to effectively design a solution. Engineered particulate solutions provided a pathway for sourcing and procuring the necessary wellbore strengthening materials.