Temperament detection based on Twitter data: classical machine learning versus deep learning

Annisa Ulizulfa, R. Kusumaningrum, K. Khadijah, Rismiyati Rismiyati
{"title":"Temperament detection based on Twitter data: classical machine learning versus deep learning","authors":"Annisa Ulizulfa, R. Kusumaningrum, K. Khadijah, Rismiyati Rismiyati","doi":"10.26555/ijain.v8i1.692","DOIUrl":null,"url":null,"abstract":"Deep learning has shown promising results in various text-based classification tasks. However, deep learning performance is affected by the number of data, i.e., when the number of data is small, deep learning algorithms do not perform well, and vice versa. Classical machine learning algorithms commonly work well for a few data, and their performance reaches an optimal value and does not increase with the increase in sample data. Therefore, this study aimed to compare the performance of classical machine learning and deep learning methods to detect temperament based on Indonesian Twitter. In this study, the proposed Indonesian Linguistic Inquiry and Word Count were employed to analyze the context of Twitter. The classical machine learning methods implemented were support vector machine and K-nearest neighbor, whereas the deep learning method employed was a convolutional neural network (CNN) with three different architectures. Both learning methods were implemented using multiclass classification and one versus all (OVA) multiclass classification. The highest average f-measure was 58.73%, obtained by CNN OVA with a pool size of 3, a dropout value of 0.7, and a learning rate value of 0.0007.","PeriodicalId":52195,"journal":{"name":"International Journal of Advances in Intelligent Informatics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/ijain.v8i1.692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deep learning has shown promising results in various text-based classification tasks. However, deep learning performance is affected by the number of data, i.e., when the number of data is small, deep learning algorithms do not perform well, and vice versa. Classical machine learning algorithms commonly work well for a few data, and their performance reaches an optimal value and does not increase with the increase in sample data. Therefore, this study aimed to compare the performance of classical machine learning and deep learning methods to detect temperament based on Indonesian Twitter. In this study, the proposed Indonesian Linguistic Inquiry and Word Count were employed to analyze the context of Twitter. The classical machine learning methods implemented were support vector machine and K-nearest neighbor, whereas the deep learning method employed was a convolutional neural network (CNN) with three different architectures. Both learning methods were implemented using multiclass classification and one versus all (OVA) multiclass classification. The highest average f-measure was 58.73%, obtained by CNN OVA with a pool size of 3, a dropout value of 0.7, and a learning rate value of 0.0007.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Twitter数据的气质检测:经典机器学习vs深度学习
深度学习在各种基于文本的分类任务中显示出有希望的结果。然而,深度学习的性能受到数据量的影响,即当数据量较少时,深度学习算法的性能不佳,反之亦然。经典的机器学习算法通常只适用于少数数据,其性能达到最优值,不会随着样本数据的增加而增加。因此,本研究旨在比较经典机器学习和深度学习方法在基于印尼Twitter的气质检测中的性能。本研究采用印尼语语言调查和字数统计来分析Twitter的语境。实现的经典机器学习方法是支持向量机和k近邻,而深度学习方法采用了具有三种不同架构的卷积神经网络(CNN)。两种学习方法均采用多类分类和一对全(OVA)多类分类实现。CNN OVA在池大小为3,dropout值为0.7,学习率值为0.0007的情况下,获得了最高的平均f值58.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Advances in Intelligent Informatics
International Journal of Advances in Intelligent Informatics Computer Science-Computer Vision and Pattern Recognition
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Emergency sign language recognition from variant of convolutional neural network (CNN) and long short term memory (LSTM) models Self-supervised few-shot learning for real-time traffic sign classification Hybrid machine learning model based on feature decomposition and entropy optimization for higher accuracy flood forecasting Imputation of missing microclimate data of coffee-pine agroforestry with machine learning Scientific reference style using rule-based machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1