NMF-based image segmentation

Viet-Hang Duong, Yuan-Shan Lee, Bach-Tung Pham, P. Bao, Jia-Ching Wang
{"title":"NMF-based image segmentation","authors":"Viet-Hang Duong, Yuan-Shan Lee, Bach-Tung Pham, P. Bao, Jia-Ching Wang","doi":"10.1109/ICCE-TW.2016.7521047","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new color image segmentation by using superpixels as feature representation and Manhattan Nonnegative Matrix Factorization (MahNMF) for accurate segmentation. Firstly, the image pixels are grouped into superpixels and considered as the coarse features. The next step is then conducted by factorizing the matrix feature into two nonnegative matrices, which respectively imply representative features and their combination coefficients per superpixel. Exploiting superpixels as features can avoid using too much global information to obtain an advance in time complexity, and using MahNMF can analyze these features for getting segmented image. The experiments show the promise of this new approach.","PeriodicalId":6620,"journal":{"name":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","volume":"44 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2016.7521047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we introduce a new color image segmentation by using superpixels as feature representation and Manhattan Nonnegative Matrix Factorization (MahNMF) for accurate segmentation. Firstly, the image pixels are grouped into superpixels and considered as the coarse features. The next step is then conducted by factorizing the matrix feature into two nonnegative matrices, which respectively imply representative features and their combination coefficients per superpixel. Exploiting superpixels as features can avoid using too much global information to obtain an advance in time complexity, and using MahNMF can analyze these features for getting segmented image. The experiments show the promise of this new approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于nmf的图像分割
本文提出了一种新的彩色图像分割方法,利用超像素作为特征表示,利用曼哈顿非负矩阵分解(Manhattan non - negative Matrix Factorization, MahNMF)进行精确分割。首先,将图像像素分组为超像素,并将其作为粗特征;下一步是将矩阵特征分解为两个非负矩阵,这两个非负矩阵分别表示每个超像素的代表性特征及其组合系数。利用超像素作为特征可以避免使用过多的全局信息来获得时间复杂度的提升,使用MahNMF可以分析这些特征来获得分割图像。实验显示了这种新方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microorganism Image Counting Based on Multi-threshold Optimization An immersive VR experience mode design Methods and apparatuses for drying electronic devices Topology constructing and restructuring mechanisms for Bluetooth radio networks Coordinate system for elliptic curve cryptosystem on twisted Edwards curve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1