{"title":"Semi-indexing semi-structured data in tiny space","authors":"G. Ottaviano, R. Grossi","doi":"10.1145/2063576.2063790","DOIUrl":null,"url":null,"abstract":"Semi-structured textual formats are gaining increasing popularity for the storage of document collections and rich logs. Their flexibility comes at the cost of having to load and parse a document entirely even if just a small part of it needs to be accessed. For instance, in data analytics massive collections are usually scanned sequentially, selecting a small number of attributes from each document. We propose a technique to attach to a raw, unparsed document (even in compressed form) a \"semi-index\": a succinct data structure that supports operations on the document tree at speed comparable with an in-memory deserialized object, thus bridging textual formats with binary formats. After describing the general technique, we focus on the JSON format: our experiments show that avoiding the full loading and parsing step can give speedups of up to 12 times for on-disk documents using a small space overhead.","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"5 1","pages":"1485-1494"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2063576.2063790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Semi-structured textual formats are gaining increasing popularity for the storage of document collections and rich logs. Their flexibility comes at the cost of having to load and parse a document entirely even if just a small part of it needs to be accessed. For instance, in data analytics massive collections are usually scanned sequentially, selecting a small number of attributes from each document. We propose a technique to attach to a raw, unparsed document (even in compressed form) a "semi-index": a succinct data structure that supports operations on the document tree at speed comparable with an in-memory deserialized object, thus bridging textual formats with binary formats. After describing the general technique, we focus on the JSON format: our experiments show that avoiding the full loading and parsing step can give speedups of up to 12 times for on-disk documents using a small space overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小空间中的半索引半结构化数据
半结构化文本格式在存储文档集合和丰富日志方面越来越受欢迎。它们的灵活性是以必须加载和解析整个文档为代价的,即使只需要访问文档的一小部分。例如,在数据分析中,通常顺序扫描大量集合,从每个文档中选择少量属性。我们提出了一种技术,将“半索引”附加到原始的、未解析的文档(即使是压缩形式)上:这是一种简洁的数据结构,支持对文档树的操作,其速度与内存中反序列化对象相当,从而将文本格式与二进制格式连接起来。在描述了一般技术之后,我们将重点关注JSON格式:我们的实验表明,避免完全加载和解析步骤可以使用很小的空间开销为磁盘上的文档提供高达12倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
scACT: Accurate Cross-modality Translation via Cycle-consistent Training from Unpaired Single-cell Data. iMIRACLE: an Iterative Multi-View Graph Neural Network to Model Intercellular Gene Regulation from Spatial Transcriptomic Data. Federated Node Classification over Distributed Ego-Networks with Secure Contrastive Embedding Sharing. Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1