MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.

Ashis Kumar Chanda, Tian Bai, Brian L Egleston, Slobodan Vucetic
{"title":"MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data.","authors":"Ashis Kumar Chanda,&nbsp;Tian Bai,&nbsp;Brian L Egleston,&nbsp;Slobodan Vucetic","doi":"10.1145/3511808.3557157","DOIUrl":null,"url":null,"abstract":"<p><p>Healthcare providers generate a medical claim after every patient visit. A medical claim consists of a list of medical codes describing the diagnosis and any treatment provided during the visit. Medical claims have been popular in medical research as a data source for retrospective cohort studies. This paper introduces a medical claim visualization system (MedCV) that supports cohort selection from medical claim data. MedCV was developed as part of a design study in collaboration with clinical researchers and statisticians. It helps a researcher to define inclusion rules for cohort selection by revealing relationships between medical codes and visualizing medical claims and patient timelines. Evaluation of our system through a user study indicates that MedCV enables domain experts to define high-quality inclusion rules in a time-efficient manner.</p>","PeriodicalId":74507,"journal":{"name":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","volume":"2022 ","pages":"4828-4832"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9830554/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Information & Knowledge Management. ACM International Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511808.3557157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Healthcare providers generate a medical claim after every patient visit. A medical claim consists of a list of medical codes describing the diagnosis and any treatment provided during the visit. Medical claims have been popular in medical research as a data source for retrospective cohort studies. This paper introduces a medical claim visualization system (MedCV) that supports cohort selection from medical claim data. MedCV was developed as part of a design study in collaboration with clinical researchers and statisticians. It helps a researcher to define inclusion rules for cohort selection by revealing relationships between medical codes and visualizing medical claims and patient timelines. Evaluation of our system through a user study indicates that MedCV enables domain experts to define high-quality inclusion rules in a time-efficient manner.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MedCV:从医疗索赔数据中识别患者队列的交互式可视化系统。
医疗保健提供者在每次患者就诊后生成医疗索赔。医疗索赔包括描述诊断和就诊期间提供的任何治疗的医疗代码列表。医学索赔作为回顾性队列研究的数据来源在医学研究中很受欢迎。本文介绍了一个医疗索赔可视化系统(MedCV),该系统支持从医疗索赔数据中进行队列选择。MedCV是与临床研究人员和统计学家合作开发的设计研究的一部分。它通过揭示医疗代码之间的关系以及可视化医疗索赔和患者时间表,帮助研究人员定义队列选择的纳入规则。通过用户研究对我们的系统进行的评估表明,MedCV使领域专家能够以高效的方式定义高质量的包含规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling Health Data Sharing with Fine-Grained Privacy. MedCV: An Interactive Visualization System for Patient Cohort Identification from Medical Claim Data. PubMed Author-assigned Keyword Extraction (PubMedAKE) Benchmark. From Product Searches to Conversational Agents for E-Commerce Non-Visual Accessibility Assessment of Videos.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1