{"title":"Lithium aluminum alloy anodes in Li-ion rechargeable batteries: past developments, recent progress, and future prospects","authors":"Tianye Zheng, S. Boles","doi":"10.1088/2516-1083/acd101","DOIUrl":null,"url":null,"abstract":"Aluminum (Al) metal has long been known to function as an anode in lithium-ion batteries (LIBs) owing to its high capacity, low potential, and effective suppression of dendrite growth. However, seemingly intrinsic degradation during cycling has made it less attractive throughout the years compared to graphitic carbon, silicon-blends, and more recently lithium metal itself. Nevertheless, with the recent unprecedented growth of the LIB industry, this review aims to revisit Al as an anode material, particularly in light of important advancements in understanding the electrochemical Li-Al system, as well as the growth of activity in solid-state batteries where cell designs may conveniently mitigate problems found in traditional liquid cells. Furthermore, this review culminates by highlighting several non-trivial points including: (1) prelithiatied Al anodes, with β-LiAl serving as an intercalation host, can be effectively immortal, depending on formation and cycling conditions; (2) the common knowledge of Al having a capacity of 993 mAh g−1 is inaccurate and attributed to kinetic limitations, thus silicon and lithium should not stand alone as the only ‘high-capacity’ candidates in the roadmap for future lithium-ion cells; (3) replacement of Cu current collectors with Al-based foil anodes may simplify LIB manufacturing and has important safety implications due to the galvanic stability of Al at high potentials vs. Li/Li+. Irrespective of the type of Li-ion device of interest, this review may be useful for those in the broader community to enhance their understanding of general alloy anode behavior, as the methodologies reported here can be extended to non-Al anodes and consequently, even to Na-ion and K-ion devices.","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"29 1","pages":""},"PeriodicalIF":32.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/2516-1083/acd101","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 3
Abstract
Aluminum (Al) metal has long been known to function as an anode in lithium-ion batteries (LIBs) owing to its high capacity, low potential, and effective suppression of dendrite growth. However, seemingly intrinsic degradation during cycling has made it less attractive throughout the years compared to graphitic carbon, silicon-blends, and more recently lithium metal itself. Nevertheless, with the recent unprecedented growth of the LIB industry, this review aims to revisit Al as an anode material, particularly in light of important advancements in understanding the electrochemical Li-Al system, as well as the growth of activity in solid-state batteries where cell designs may conveniently mitigate problems found in traditional liquid cells. Furthermore, this review culminates by highlighting several non-trivial points including: (1) prelithiatied Al anodes, with β-LiAl serving as an intercalation host, can be effectively immortal, depending on formation and cycling conditions; (2) the common knowledge of Al having a capacity of 993 mAh g−1 is inaccurate and attributed to kinetic limitations, thus silicon and lithium should not stand alone as the only ‘high-capacity’ candidates in the roadmap for future lithium-ion cells; (3) replacement of Cu current collectors with Al-based foil anodes may simplify LIB manufacturing and has important safety implications due to the galvanic stability of Al at high potentials vs. Li/Li+. Irrespective of the type of Li-ion device of interest, this review may be useful for those in the broader community to enhance their understanding of general alloy anode behavior, as the methodologies reported here can be extended to non-Al anodes and consequently, even to Na-ion and K-ion devices.
由于铝(Al)金属具有高容量、低电位和有效抑制枝晶生长的特点,长期以来一直被认为是锂离子电池(LIBs)的阳极。然而,与石墨碳、硅混合物以及最近的锂金属本身相比,循环过程中看似固有的降解使其多年来不那么有吸引力。然而,随着锂离子电池产业的空前发展,本综述旨在重新审视铝作为阳极材料,特别是考虑到电化学锂-铝系统的重要进展,以及固态电池活性的增长,电池设计可以方便地减轻传统液体电池中发现的问题。此外,本文最后强调了几个重要的要点,包括:(1)β-LiAl作为插层主体的预锂化Al阳极可以有效地永生,这取决于形成和循环条件;(2)关于Al的容量为993 mAh g - 1的常识是不准确的,并且归因于动力学限制,因此硅和锂不应该单独作为未来锂离子电池路线图中唯一的“高容量”候选者;(3)用铝基箔阳极代替铜集流器可以简化锂离子电池的制造,并且由于铝在高电位下的电稳定性与Li/Li+相比具有重要的安全意义。无论所关注的锂离子器件的类型如何,这篇综述可能对更广泛的社区的人们有用,以增强他们对一般合金阳极行为的理解,因为这里报道的方法可以扩展到非al阳极,因此,甚至可以扩展到na离子和k离子器件。
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.