Application of Bi-partite Optimal Matching in Color-Base Image Retrieval

Q1 Social Sciences HumanMachine Communication Journal Pub Date : 2010-04-24 DOI:10.1109/MVHI.2010.69
S. Luo, Hongjiao Jin
{"title":"Application of Bi-partite Optimal Matching in Color-Base Image Retrieval","authors":"S. Luo, Hongjiao Jin","doi":"10.1109/MVHI.2010.69","DOIUrl":null,"url":null,"abstract":"Image description and characteristic extraction are the most important steps of color-Base image retrieval. This paper proposed a new method based on the related methods of graph theory. The new method defines every parts of the images as a vertex, than calculate the similarity measure as the weight value to design a weighted bi-partite graph. The congruent relationship between images is transform into searching the optimal matching in this bipartite graph. In the new method, both color dimensional distribution and geometric transformation invariance are considered. The simulation results show the effectiveness of the novel method.","PeriodicalId":34860,"journal":{"name":"HumanMachine Communication Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HumanMachine Communication Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVHI.2010.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 1

Abstract

Image description and characteristic extraction are the most important steps of color-Base image retrieval. This paper proposed a new method based on the related methods of graph theory. The new method defines every parts of the images as a vertex, than calculate the similarity measure as the weight value to design a weighted bi-partite graph. The congruent relationship between images is transform into searching the optimal matching in this bipartite graph. In the new method, both color dimensional distribution and geometric transformation invariance are considered. The simulation results show the effectiveness of the novel method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二部最优匹配在彩色图像检索中的应用
图像描述和特征提取是彩色图像检索的重要步骤。本文在图论相关方法的基础上提出了一种新的方法。该方法将图像的每个部分定义为一个顶点,然后计算相似度作为权重值来设计加权的二分图。将图像间的同余关系转化为在二部图中寻找最优匹配。该方法同时考虑了颜色维度分布和几何变换不变性。仿真结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.00
自引率
0.00%
发文量
10
审稿时长
8 weeks
期刊最新文献
Defining Dialogues: Tracing the Evolution of Human-Machine Communication Who is (communicatively more) responsible behind the wheel? Applying the theory of communicative responsibility to TAM in the context of using navigation technology Archipelagic Human-Machine Communication: Building Bridges amidst Cultivated Ambiguity Triggered by Socialbots: Communicative Anthropomorphization of Bots in Online Conversations Boundary Regulation Processes and Privacy Concerns With (Non-)Use of Voice-Based Assistants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1