{"title":"Behavioral modeling techniques for teaching communication circuits and systems","authors":"J. M. Rosa","doi":"10.1109/ISCAS.2012.6271796","DOIUrl":null,"url":null,"abstract":"This paper discusses the use of behavioral simulation techniques to improve the quality of teaching/learning circuits and systems for communications. The proposed pedagogical methodology has been applied in several electrical engineering courses, in both undergraduate and master degrees. The method allows students to better understand some complex circuit-and physical-level phenomena, by describing them at a higher abstraction level. In addition to enhance their understanding of design problems and skills, students become more motivated and satisfied. As an application, two case studies are considered in this work: a radio-frequency front-end system and an analog-to-digital converter. In both cases, behavioral models of the different building blocks have been implemented in MATLAB/SIMULINK and used by the students enrolled in two courses named: Electronic Circuits for Communications and Wireless Transceivers: Standards, Techniques and Architectures.","PeriodicalId":91083,"journal":{"name":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","volume":"81 1","pages":"2453-2456"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on Circuits and Systems proceedings. IEEE International Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2012.6271796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper discusses the use of behavioral simulation techniques to improve the quality of teaching/learning circuits and systems for communications. The proposed pedagogical methodology has been applied in several electrical engineering courses, in both undergraduate and master degrees. The method allows students to better understand some complex circuit-and physical-level phenomena, by describing them at a higher abstraction level. In addition to enhance their understanding of design problems and skills, students become more motivated and satisfied. As an application, two case studies are considered in this work: a radio-frequency front-end system and an analog-to-digital converter. In both cases, behavioral models of the different building blocks have been implemented in MATLAB/SIMULINK and used by the students enrolled in two courses named: Electronic Circuits for Communications and Wireless Transceivers: Standards, Techniques and Architectures.