CO2 Sequestration by Mineral Carbonation: A Review

Saran R.K
{"title":"CO2 Sequestration by Mineral Carbonation: A Review","authors":"Saran R.K","doi":"10.30955/gnj.002597","DOIUrl":null,"url":null,"abstract":"The mineral sequestration, one of the methods of CO2 sequestration, is considered advantageous, as it not only facilitates permanent and leakage free storage of CO2 but also obviates the need for regular monitoring. Mineral sequestration involves the dissolution of minerals and subsequently carbonation of dissolved minerals. In the direct mineral sequestration all the processes occur within a single reactor, whereas in the cases of indirect mineral sequestration, they take place in separate reactors. The main aim of the present study is to investigate the efficacy of these mineral sequestration methods and examine their suitability for industrial application and ensuring environmental friendliness. For this purpose, literature pertaining to these methods was extensively reviewed, and observations made by several researchers were collected, collated and compared based on the various parameters such as reaction pathways, reaction kinetics and cost of the process. The process cost was found to depend on the type of the process, process parameters, input materials and additives. It was noted that the direct mineral sequestration suffers from the sluggish reaction kinetics, thereby becomes economically unviable. The success of direct mineral sequestration process is yet to be achieved despite research carried out for several years. The problem of sluggish reaction kinetics was overcome by using multi-steps indirect carbonation routes, where separate reactors were used for dissolution and precipitation processes. The indirect sequestration method was noted to be most efficient as it offered several advantages such as improved reaction kinetics and recovery of the market value of by-product due to the better quality control of the product. Hence, based on interpretation of an extensive review of literature it can be concluded that the indirect mineral sequestration may be a viable option to carry out the CO2 sequestration and may be proved as a guiding light to ensure the clean environment for future generation. \n","PeriodicalId":23539,"journal":{"name":"Volume 1, Issue 3","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1, Issue 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.002597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

The mineral sequestration, one of the methods of CO2 sequestration, is considered advantageous, as it not only facilitates permanent and leakage free storage of CO2 but also obviates the need for regular monitoring. Mineral sequestration involves the dissolution of minerals and subsequently carbonation of dissolved minerals. In the direct mineral sequestration all the processes occur within a single reactor, whereas in the cases of indirect mineral sequestration, they take place in separate reactors. The main aim of the present study is to investigate the efficacy of these mineral sequestration methods and examine their suitability for industrial application and ensuring environmental friendliness. For this purpose, literature pertaining to these methods was extensively reviewed, and observations made by several researchers were collected, collated and compared based on the various parameters such as reaction pathways, reaction kinetics and cost of the process. The process cost was found to depend on the type of the process, process parameters, input materials and additives. It was noted that the direct mineral sequestration suffers from the sluggish reaction kinetics, thereby becomes economically unviable. The success of direct mineral sequestration process is yet to be achieved despite research carried out for several years. The problem of sluggish reaction kinetics was overcome by using multi-steps indirect carbonation routes, where separate reactors were used for dissolution and precipitation processes. The indirect sequestration method was noted to be most efficient as it offered several advantages such as improved reaction kinetics and recovery of the market value of by-product due to the better quality control of the product. Hence, based on interpretation of an extensive review of literature it can be concluded that the indirect mineral sequestration may be a viable option to carry out the CO2 sequestration and may be proved as a guiding light to ensure the clean environment for future generation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
矿物碳酸化封存CO2的研究进展
矿物封存是二氧化碳封存的方法之一,被认为是有利的,因为它不仅有利于永久和无泄漏的二氧化碳储存,而且还避免了定期监测的需要。矿物封存涉及矿物的溶解和随后的溶解矿物的碳酸化。在直接矿物隔离中,所有的过程都在一个反应器内进行,而在间接矿物隔离的情况下,它们在单独的反应器中进行。本研究的主要目的是研究这些矿物隔离方法的有效性,并检查它们是否适合工业应用和确保环境友好。为此,我们广泛查阅了与这些方法有关的文献,并根据反应途径、反应动力学和过程成本等各种参数收集、整理和比较了几位研究人员的观察结果。发现工艺成本取决于工艺类型、工艺参数、输入材料和添加剂。指出直接固矿法反应动力学缓慢,经济上不可行。尽管进行了数年的研究,但直接矿物封存工艺仍未取得成功。通过采用多步骤间接碳酸化方法克服了反应动力学迟缓的问题,其中溶解和沉淀过程使用单独的反应器。间接固存法是最有效的方法,因为它具有几个优点,如反应动力学的改善和副产品的市场价值的回收,因为产品的质量控制更好。因此,通过对大量文献的解读,可以得出结论,间接矿物封存可能是进行CO2封存的可行选择,并可能被证明是为子孙后代确保清洁环境的指路明灯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Stability of 1-Methylcyclopropene and Methylenecyclopropane Tautomers: Ab initio and DFT Study Variation of Flux Reflected in Solar Parabolic trough Collectors with Rim Angle Kinetics of Natural Kaolinite as a Catalyst for Toluene Dry Reforming Analysis of the Effect of Piping Geometrical Shape on Major Head Losses in Pipes Mubarak Ali's Contributions in Historiography Trends in Pakistan
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1