Quantitative characterization of kaolinite dispersibility in styrene–butadiene rubber composites by fractal dimension

Yude Zhang, Qinfu Liu, R. Frost
{"title":"Quantitative characterization of kaolinite dispersibility in styrene–butadiene rubber composites by fractal dimension","authors":"Yude Zhang, Qinfu Liu, R. Frost","doi":"10.1002/PC.23055","DOIUrl":null,"url":null,"abstract":"A fractal method was introduced to quantitatively characterize the dispersibility of modified kaolinite (MK) and precipitated silica (PS) in styrene–butadiene rubber (SBR) matrix based on the lower magnification transmission electron microscopic images. The fractal dimension (FD) is greater, and the dispersion is worse. The fractal results showed that the dispersibility of MK in the latex blending sample is better than that in the mill blending samples. With the increase of kaolinite content, the FD increases from 1.713 to 1.800, and the dispersibility of kaolinite gradually decreases. There is a negative correlation between the dispersibility and loading content. With the decrease of MK and increase of PS, the FD significantly decreases from 1.735 to 1.496 and the dipersibility of kaolinite remarkably increases. The hybridization can improve the dispersibility of fillers in polymer matrix. The FD can be used to quantitatively characterize the aggregation and dispersion of kaolinite sheets in rubber matrix.","PeriodicalId":21486,"journal":{"name":"Science & Engineering Faculty","volume":"81 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science & Engineering Faculty","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/PC.23055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

A fractal method was introduced to quantitatively characterize the dispersibility of modified kaolinite (MK) and precipitated silica (PS) in styrene–butadiene rubber (SBR) matrix based on the lower magnification transmission electron microscopic images. The fractal dimension (FD) is greater, and the dispersion is worse. The fractal results showed that the dispersibility of MK in the latex blending sample is better than that in the mill blending samples. With the increase of kaolinite content, the FD increases from 1.713 to 1.800, and the dispersibility of kaolinite gradually decreases. There is a negative correlation between the dispersibility and loading content. With the decrease of MK and increase of PS, the FD significantly decreases from 1.735 to 1.496 and the dipersibility of kaolinite remarkably increases. The hybridization can improve the dispersibility of fillers in polymer matrix. The FD can be used to quantitatively characterize the aggregation and dispersion of kaolinite sheets in rubber matrix.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用分形维数定量表征高岭石在丁苯橡胶复合材料中的分散性
采用分形方法对改性高岭石(MK)和沉淀二氧化硅(PS)在丁苯橡胶(SBR)基体中的分散性能进行了定量表征。分形维数(FD)越大,分散性越差。分形结果表明,MK在胶乳共混样品中的分散性优于磨浆共混样品。随着高岭石含量的增加,FD从1.713增加到1.800,高岭石的分散性逐渐降低。分散性与载料含量呈负相关。随着MK的降低和PS的增加,FD从1.735显著降低到1.496,高岭石的分散性显著增加。杂化可以提高填料在聚合物基体中的分散性。FD可以定量表征高岭石片在橡胶基体中的聚集和分散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Box-columns with combined axial compressive and torsional loading E-tendering readiness in construction: an a priori model Improving the efficiency of fully Bayesian optimal design of experiments using randomised quasi-Monte Carlo Enhancement of confined air jet impingement heat transfer using perforated pin fin heat sinks Measuring impacts and risks to the public of a privately operated toll road project by considering perspectives in cost-benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1