{"title":"Efficient MPC algorithms with variable trajectories of parameters weighting predicted control errors","authors":"Robert Nebeluk, P. Marusak","doi":"10.24425/ACS.2020.133502","DOIUrl":null,"url":null,"abstract":"Model predictive control (MPC) algorithms brought increase of the control system performance in many applications thanks to relatively easily solving issues that are hard to solve without these algorithms. The paper is focused on investigating how to further improve the control system performance using a trajectory of parameters weighting predicted control errors in the performance function of the optimization problem. Different shapes of trajectories are proposed and their influence on control systems is tested. Additionally, experiments checking the influence of disturbances and of modeling uncertainty on control system performance are conducted. The case studies were done in control systems of three control plants: a linear nonminimumphase plant, a nonlinear polymerization reactor and a nonlinear thin film evaporator. Three types of MPC algorithms were used during research: linear DMC, nonlinear DMC with successive linearization (NDMC–SL), nonlinear DMC with nonlinear prediction and linearization (NDMC–NPL). Results of conducted experiments are presented in greater detail for the control system of the polymerization reactor, whereas for the other two control systems only the most interesting results are presented, for the sake of brevity. The experiments in the control system of the linear plant were done as preliminary experiments with the modified optimization problem. In the case of control system of the thin film evaporator the researched mechanisms were used in the control system of a MIMO plant showing possibilities of improving the control system performance.","PeriodicalId":48654,"journal":{"name":"Archives of Control Sciences","volume":"15 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Control Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.24425/ACS.2020.133502","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 14
Abstract
Model predictive control (MPC) algorithms brought increase of the control system performance in many applications thanks to relatively easily solving issues that are hard to solve without these algorithms. The paper is focused on investigating how to further improve the control system performance using a trajectory of parameters weighting predicted control errors in the performance function of the optimization problem. Different shapes of trajectories are proposed and their influence on control systems is tested. Additionally, experiments checking the influence of disturbances and of modeling uncertainty on control system performance are conducted. The case studies were done in control systems of three control plants: a linear nonminimumphase plant, a nonlinear polymerization reactor and a nonlinear thin film evaporator. Three types of MPC algorithms were used during research: linear DMC, nonlinear DMC with successive linearization (NDMC–SL), nonlinear DMC with nonlinear prediction and linearization (NDMC–NPL). Results of conducted experiments are presented in greater detail for the control system of the polymerization reactor, whereas for the other two control systems only the most interesting results are presented, for the sake of brevity. The experiments in the control system of the linear plant were done as preliminary experiments with the modified optimization problem. In the case of control system of the thin film evaporator the researched mechanisms were used in the control system of a MIMO plant showing possibilities of improving the control system performance.
期刊介绍:
Archives of Control Sciences welcomes for consideration papers on topics of significance in broadly understood control science and related areas, including: basic control theory, optimal control, optimization methods, control of complex systems, mathematical modeling of dynamic and control systems, expert and decision support systems and diverse methods of knowledge modelling and representing uncertainty (by stochastic, set-valued, fuzzy or rough set methods, etc.), robotics and flexible manufacturing systems. Related areas that are covered include information technology, parallel and distributed computations, neural networks and mathematical biomedicine, mathematical economics, applied game theory, financial engineering, business informatics and other similar fields.