Zhao-peng Yang, Xingmin Li, Xinxia Xu, Y. Shen, Xiaoxing Shi
{"title":"Development Features of Cold Production with Horizontal Wells in a Foamy Extra-Heavy Oil Reservoir","authors":"Zhao-peng Yang, Xingmin Li, Xinxia Xu, Y. Shen, Xiaoxing Shi","doi":"10.2118/200974-ms","DOIUrl":null,"url":null,"abstract":"\n The block M as a foamy extra-heavy oil field in the Carabobo Area, the eastern Orinoco Belt, has been exploited by foamy oil cold production utilizing horizontal wells. The early producing area of block M has been put into production more than 10 years. And the development features of cold production in foamy extra-heavy oil reservoirs are different from the conventional oil field. It is necessary to investigate the development features of this kind reservoir and analyze its influence factors.\n Combining the production data with the reservoir geological characteristics of the research area, the cold production features of foamy extra-heavy oil using horizontal wells are analyzed. Then numerical simulations were adopted to study the influence factors of cold production performance.\n In the early stage of cold production, the oil production rate is high and the producing GOR is low. With the process of cold production, the reservoir pressure decreases gradually, the producing GOR increases gradually, and the oil production rate decreases gradually. When the bottom hole flowing pressure drops to below the bubble point pressure, the flow of extra-heavy oil in the reservoir can be divided into two zones: far well zone and near well area. In the far well zone, the pressure is higher than the bubble point pressure. The flow of oil is a single-phase flow, and the displacement mode is elastic driving. In the near well area, the pressure is lower than the bubble point pressure, and the oil flow is foamy oil flow, and the displacement mode is the dissolving gas drive driven by foamy oil. There exists many factors that influence the cold production performance of foamy extra-heavy oil, including reservoir depth, reservoir thickness, reservoir physical property and heterogeneity. The oil recovery factor per unit pressure drop can evaluate the cold production performance of foamy extra-heavy oil reservoirs. The effectiveness of cold production is closely related to reservoir parameters. Larger reservoir thickness, deeper reservoir depth and greater reservoir permeability will enhance the performance of cold production. Closer, larger and more interlayers above the horizontal well will hinder the performance of cold production.\n This research provides certain guidance and reference for further development adjustment and new project evaluation for foamy extra-heavy oil reservoirs in the Eastern Orinoco Belt.","PeriodicalId":11142,"journal":{"name":"Day 3 Wed, June 30, 2021","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, June 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/200974-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The block M as a foamy extra-heavy oil field in the Carabobo Area, the eastern Orinoco Belt, has been exploited by foamy oil cold production utilizing horizontal wells. The early producing area of block M has been put into production more than 10 years. And the development features of cold production in foamy extra-heavy oil reservoirs are different from the conventional oil field. It is necessary to investigate the development features of this kind reservoir and analyze its influence factors.
Combining the production data with the reservoir geological characteristics of the research area, the cold production features of foamy extra-heavy oil using horizontal wells are analyzed. Then numerical simulations were adopted to study the influence factors of cold production performance.
In the early stage of cold production, the oil production rate is high and the producing GOR is low. With the process of cold production, the reservoir pressure decreases gradually, the producing GOR increases gradually, and the oil production rate decreases gradually. When the bottom hole flowing pressure drops to below the bubble point pressure, the flow of extra-heavy oil in the reservoir can be divided into two zones: far well zone and near well area. In the far well zone, the pressure is higher than the bubble point pressure. The flow of oil is a single-phase flow, and the displacement mode is elastic driving. In the near well area, the pressure is lower than the bubble point pressure, and the oil flow is foamy oil flow, and the displacement mode is the dissolving gas drive driven by foamy oil. There exists many factors that influence the cold production performance of foamy extra-heavy oil, including reservoir depth, reservoir thickness, reservoir physical property and heterogeneity. The oil recovery factor per unit pressure drop can evaluate the cold production performance of foamy extra-heavy oil reservoirs. The effectiveness of cold production is closely related to reservoir parameters. Larger reservoir thickness, deeper reservoir depth and greater reservoir permeability will enhance the performance of cold production. Closer, larger and more interlayers above the horizontal well will hinder the performance of cold production.
This research provides certain guidance and reference for further development adjustment and new project evaluation for foamy extra-heavy oil reservoirs in the Eastern Orinoco Belt.