Daryl Weir, Henning Pohl, Simon Rogers, K. Vertanen, P. Kristensson
{"title":"Uncertain text entry on mobile devices","authors":"Daryl Weir, Henning Pohl, Simon Rogers, K. Vertanen, P. Kristensson","doi":"10.1145/2556288.2557412","DOIUrl":null,"url":null,"abstract":"Users often struggle to enter text accurately on touchscreen keyboards. To address this, we present a flexible decoder for touchscreen text entry that combines probabilistic touch models with a language model. We investigate two different touch models. The first touch model is based on a Gaussian Process regression approach and implicitly models the inherent uncertainty of the touching process. The second touch model allows users to explicitly control the uncertainty via touch pressure. Using the first model we show that the character error rate can be reduced by up to 7% over a baseline method, and by up to 1.3% over a leading commercial keyboard. Using the second model we demonstrate that providing users with control over input certainty reduces the amount of text users have to correct manually and increases the text entry rate.","PeriodicalId":20599,"journal":{"name":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2556288.2557412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
Users often struggle to enter text accurately on touchscreen keyboards. To address this, we present a flexible decoder for touchscreen text entry that combines probabilistic touch models with a language model. We investigate two different touch models. The first touch model is based on a Gaussian Process regression approach and implicitly models the inherent uncertainty of the touching process. The second touch model allows users to explicitly control the uncertainty via touch pressure. Using the first model we show that the character error rate can be reduced by up to 7% over a baseline method, and by up to 1.3% over a leading commercial keyboard. Using the second model we demonstrate that providing users with control over input certainty reduces the amount of text users have to correct manually and increases the text entry rate.