Nongalvanic Calibration and Operation of a Quantum Dot Thermometer

J. Chawner, S. Barraud, M. F. Gonzalez-Zalba, S. Holt, Edward Laird, Y. Pashkin, J. Prance
{"title":"Nongalvanic Calibration and Operation of a Quantum Dot Thermometer","authors":"J. Chawner, S. Barraud, M. F. Gonzalez-Zalba, S. Holt, Edward Laird, Y. Pashkin, J. Prance","doi":"10.1103/PHYSREVAPPLIED.15.034044","DOIUrl":null,"url":null,"abstract":"A cryogenic quantum dot thermometer is calibrated and operated using only a single non-galvanic gate connection. The thermometer is probed with radio-frequency reflectometry and calibrated by fitting a physical model to the phase of the reflected radio-frequency signal taken at temperatures across a small range. Thermometry of the source and drain reservoirs of the dot is then performed by fitting the calibrated physical model to new phase data. The thermometer can operate at the transition between thermally broadened and lifetime broadened regimes, and outside the temperatures used in calibration. Electron thermometry was performed at temperatures between $3.0\\,\\mathrm{K}$ and $1.0\\,\\mathrm{K}$, in both a $1\\,\\mathrm{K}$ cryostat and a dilution refrigerator. The experimental setup allows fast electron temperature readout with a sensitivity of $4.0\\pm0.3 \\, \\mathrm{mK}/\\sqrt{\\mathrm{Hz}}$, at Kelvin temperatures. The non-galvanic calibration process gives a readout of physical parameters, such as the quantum dot lever arm. The demodulator used for reflectometry readout is readily available and very affordable.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.034044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

A cryogenic quantum dot thermometer is calibrated and operated using only a single non-galvanic gate connection. The thermometer is probed with radio-frequency reflectometry and calibrated by fitting a physical model to the phase of the reflected radio-frequency signal taken at temperatures across a small range. Thermometry of the source and drain reservoirs of the dot is then performed by fitting the calibrated physical model to new phase data. The thermometer can operate at the transition between thermally broadened and lifetime broadened regimes, and outside the temperatures used in calibration. Electron thermometry was performed at temperatures between $3.0\,\mathrm{K}$ and $1.0\,\mathrm{K}$, in both a $1\,\mathrm{K}$ cryostat and a dilution refrigerator. The experimental setup allows fast electron temperature readout with a sensitivity of $4.0\pm0.3 \, \mathrm{mK}/\sqrt{\mathrm{Hz}}$, at Kelvin temperatures. The non-galvanic calibration process gives a readout of physical parameters, such as the quantum dot lever arm. The demodulator used for reflectometry readout is readily available and very affordable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子点温度计的非电态校准与操作
低温量子点温度计的校准和操作仅使用一个单一的非电栅连接。温度计用射频反射仪探测,并通过将物理模型拟合到在小范围温度下反射的射频信号的相位来校准。然后,通过将校准后的物理模型拟合到新的相位数据中,对点的源和漏储层进行测温。温度计可以在热加宽和寿命加宽制度之间的过渡,并在校准中使用的温度之外操作。电子测温在$3.0\,\ mathm {K}$和$1.0\,\ mathm {K}$之间,分别在$1\,\ mathm {K}$低温恒温器和稀释冰箱中进行。实验装置允许在开尔文温度下快速读取电子温度,灵敏度为$4.0\pm0.3 \, \ mathm {mK}/\sqrt{\ mathm {Hz}}$。非电校准过程给出物理参数的读数,如量子点杠杆臂。用于反射计读出的解调器很容易获得,而且价格低廉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A driven fractal network: Possible route to efficient thermoelectric application Double Electron Spin Resonance of Engineered Atomic Structures on a Surface Reconfigurable Training, Vortex Writing and Spin-Wave Fingerprinting in an Artificial Spin-Vortex Ice Data mining, dashboards and statistics: a powerful framework for the chemical design of molecular nanomagnets Observation of electrically tunable Feshbach resonances in twisted bilayer semiconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1