{"title":"SCSV\n 2","authors":"Lixing He, C. Ruiz, Mostafa Mirshekari, Shijia Pan","doi":"10.1145/3410530.3414586","DOIUrl":null,"url":null,"abstract":"Structural vibration sensing has been explored to acquire indoor human information. This non-intrusive sensing modality enables various smart building applications such as long-term in-home elderly monitoring, ubiquitous gait analysis, etc. However, for applications that utilize multiple sensors to collaboratively infer this information (e.g., localization, activities of daily living recognition), the system configuration requires the location of the anchor sensor, which are usually acquired manually. This labor-intensive manual system configuration limited the scalability of the system. In this paper, we propose SCSV2, a self-configuration scheme to compute these vibration sensor locations utilizing shared context information acquired from complementary sensing modalities - vibration sensor itself and co-located cameras. SCSV2 combines 1) the physics models of wave propagation together with structural element effects and 2) the data-driven model from the multimodal data to infer the vibration sensor's location. We conducted real-world experiments to verify our proposed method and achieved an up to 7cm anchor sensor localization accuracy.","PeriodicalId":7183,"journal":{"name":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM International Symposium on Wearable Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3410530.3414586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Structural vibration sensing has been explored to acquire indoor human information. This non-intrusive sensing modality enables various smart building applications such as long-term in-home elderly monitoring, ubiquitous gait analysis, etc. However, for applications that utilize multiple sensors to collaboratively infer this information (e.g., localization, activities of daily living recognition), the system configuration requires the location of the anchor sensor, which are usually acquired manually. This labor-intensive manual system configuration limited the scalability of the system. In this paper, we propose SCSV2, a self-configuration scheme to compute these vibration sensor locations utilizing shared context information acquired from complementary sensing modalities - vibration sensor itself and co-located cameras. SCSV2 combines 1) the physics models of wave propagation together with structural element effects and 2) the data-driven model from the multimodal data to infer the vibration sensor's location. We conducted real-world experiments to verify our proposed method and achieved an up to 7cm anchor sensor localization accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using gamification to create and label photos that are challenging for computer vision and people Pose evaluation for dance learning application using joint position and angular similarity SParking: a win-win data-driven contract parking sharing system HeadgearX Blink rate variability: a marker of sustained attention during a visual task
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1